Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20202242
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

AUSTENITE SOFTENING IN THE FINISHING STAGE OF T.M.C.P. OF HIGH NIOBIUM-LOW MANGANESE MICROALLOYED STEELS

AMACIAMENTO DA AUSTENITA DURANTE A FASE DE ACABAMENTO DO PROCESSAMENTO TERMOMECÂNICO DE AÇOS MICROLIGADOS COM ALTO NIÓBIO E BAIXO MANGANÊS

Antonio Augusto Gorni, José Herbert Dolabela da Silveira, Kenji Camey, Emanuelle Garcia Reis

Downloads: 0
Views: 120

Abstract

Recently several studies have been developed on the use of microalloyed steels with low Mn content (below 1%) in the controlled rolling of heavy plates for the manufacture of pipes. However, lower Mn contents should lead to the acceleration of NbCN precipitation kinetics during rolling, reducing the soluble Nb content in austenite. This fact, plus the heavy and fast passes applied under virtually isothermal conditions in a heavy plate rolling mill, increases the risk of partial recrystallization during the finishing stage of the controlled rolling, since strain hardening of austenite becomes significant and the interaction between precipitation and recrystallization is increasingly delayed. The objective of this study was to analyze the evolution of mean flow stress during the finishing stage of controlled rolling in these low Mn, high Nb microalloyed steels to better understand the metallurgical mechanisms acting during this process.

Keywords

Controlled Rolling; Low Mn high Nb microalloyed steels; Austenite recrystallization; NbCN precipitation.

Resumo

Recentemente foram desenvolvidos estudos sobre o uso de aços microligados com baixo teor de Mn (abaixo de 1%) na laminação controlada de chapas grossas para a manufatura de tubos de grande diâmetro. Contudo, menores teores de Mn podem levar à aceleração da precipitação de NbCN durante a laminação, levando a uma redução no teor de Nb solúvel presente na austenita. Este fato, mais os rápidos e pesados passes aplicados sob condições virtualmente isotérmicas num laminador de chapas grossas, aumentam o risco de recristalização durante a fase de acabamento da laminação controlada, já que o encruamento da austenita se torna significativo e a interação entre precipitação e recristalização é cada vez mais atrasada. O objetivo desse estudo consistiu em analisar a evolução da resistência média à deformação durante a fase de acabamento da laminação controlada nestes aços com baixo Mn e alto Nb para se entender melhor os mecanismos metalúrgicos que atuam durante esse processo.

Palavras-chave

Laminação controlada; Aços microligados com baixo Mn e alto Nb; Recristalização da austenita; Precipitação de NbCN.

Referências

1 Gorni AA, Silveira JHD, Camey K, Reis EG. Austenite partial recrystallization in the finishing stage of controlled rolling of niobium microalloyed steels with low manganese. In: Proceedings of the 11th International Rolling Conference: ABM Week; 2019; São Paulo. São Paulo: ABM; 2019.

2 Jansto S. The integration of process and product metallurgy in niobium bearing steels. Metals. 2018;8(671):1-20.

3 Gorni AA, Reis JSS, Silva CNP, Cavalcanti CG. Otimização da composição química e do processo de laminação controlada de chapas grossas navais. In: Anais do 32º Seminário de Laminação: Processos e Produtos Laminados e Revestidos; 1995; Curitiba. São Paulo: Associação Brasileira de Metalurgia e Materiais; 1995. p. 373-392.

4 Gray JM. Ultra low manganese high toughness HTP sour service linepipe steel. In: Proceedings of the Microalloyed Pipe Steels for the Oil & Gas Industry Congress; 2013; Moscow, Russia. Moscow: CBMM; 2013. 14 p.

5 Maehara Y, Kunitake T, Fujino N. The effect of alloying elements on the static recrystallization of mild steels in the austenite range. Tetsu To Hagane. 1981;67:362-371.

6 Cho SH, Bang KB, Jonas JJ. Effect of manganese on recrystallisation kinetics of niobium microalloyed steel. Materials Science and Technology. 2002;18:389-395.

7 Lotter U, Schmitz HP, Zhang L. Application of the metallurgically oriented simulation system “TKS-StripCam” to predict the properties of hot strip steels from the rolling conditions. Advanced Engineering Materials. 2002;4:207-213.

8 Koyama S, Ishii T, Narita K. Effects of Mn, Si, Cr and Ni on the solution and precipitation of niobium carbide in iron austenite. Journal of the Japanese Institute of Metals. 1971;35:1089-1094.

9 Akben MG, Weiss I, Jonas JJ. Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn. Acta Metallurgica. 1981;29:111-121.

10 Karmakar A, Biswas S, Mukherjee S, Chakrabarti D, Kumar V. Effect of composition and thermomechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel. Materials Science and Engineering A. 2017;690:158-169.

11 Miao CL, Shang CJ, Zhang GD, Zhu GH, Zurob H, Subramanian S. Studies on softening kinetics of niobium microalloyed steel using stress relaxation technique. Frontiers of Materials Science in China. 2010;4:197-201.

12 Subramanian S, Zurob H, Miao C, Shang C. Studies on softening kinetics of low manganese steel microalloyed with niobium for high-strength sour service ERW pipe. In: Proceedings of the International Symposium on the Recent Developments in Plate Steels; 2011; Winter Park, Colo. USA. Warrendale : Association for Iron & Steel Technology; 2011. p. 365-374.

13 Oliveira NJL, Andrade MS, Castro CSB, Escobar DP, Borba EC, Silva JCP, et al. Precipitação de Nb(C,N) durante a laminação a quente de chapas grossas de um aço com baixo Mn e Alto Nb. Belo Horizonte: Centro de Inovação e Tecnologia SENAI-FIEMG; 2017. 102 p. Relatório Final de Projeto.

14 Boratto F, Barbosa R, Yue S, Jonas JJ. Effect of chemical composition on the critical temperatures of microalloyed steels. In: Thermec-88: Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals; 1988; Tokyo, Japan. Tokyo: Iron and Steel Institute of Japan; 1988. p. 383-390.

15 Bai D, Bodnar R, Ward J, Dorricott J, Sanders S. Development of discrete X80 line pipe plate at SSAB Americas. In: Proceedings of the International Symposium on the Recent Developments in Plate Steels; 2011; Winter Park, Colo. USA. Warrendale: Association for Iron and Steel Technology; 2011. p. 13-22.

16 Sims RB. The calculation of roll force and torque in hot rolling mills. Proceedings of the Institution of Mechanical Engineers. 1954;168:191-214.

17 Pereda B, Rodriguez-Ibabe JM, López B. Improved model of kinetics of strain induced precipitation and microstructure evolution of Nb microalloyed steels during multipass rolling. ISIJ International. 2008;48:1457-1466.

18 Rodrigues SF, Aranas C Jr, Wang T, Jonas JJ. Dynamic transformation of an X70 steel under plate rolling conditions. ISIJ International. 2017;57:162-169.


Submetido em:
15/11/2019

Aceito em:
08/12/2019

5ece69970e88254471e6aafb tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections