Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20202295
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

EFFECT OF PLATE SURFACE CONDITIONS ON ACCELERATED COOLING PERFORMANCE

EFEITO DAS CONDIÇÕES SUPERFICIAS DA CHAPA NO DESEMPENHO DO RESFRIAMENTO ACELERADO

Emanuelle Garcia Reis, Antonio Augusto Gorni, Daniel Bojikian Matsubara, Edmar de Souza Silva, Ian Robinson, José Herbert Dolabela da Silveira, Rafael Abreu Fraga, Rodney Pardo Alves

Downloads: 1
Views: 802

Abstract

The purpose of the accelerated cooling process during plate production is to increase the mechanical strength of the final plate, together with improved toughness and weldability, in lower carbon equivalent steels. This process is affected by the quality of the plate surface during cooling, the plate shape after rolling and the conditions of the cooling process itself. These conditions need to be carefully controlled and are mostly influenced by the scale formation and the temperatures uniformity of the product; from the slab reheating to the end of the accelerated cooling. The surface descaling must be performed in an integrated manner that achieves a homogeneous temperature profile after accelerated cooling, over the entire plate in three dimensions: thickness, width and length.

Keywords

Plate mill, Flatness, Accelerated cooling, Controlled rolling, Scale.

Resumo

O objetivo do processo de resfriamento acelerado na laminação de chapas grossas é promover o aumento da resistência mecânica do produto acabado, concomitantemente com a melhoria da tenacidade e da soldabilidade, em aços com menor carbono equivalente. Este processo tem a maior eficácia dependendo da qualidade da superfície da chapa que está sendo resfriada, da forma do esboço após a laminação e das condições do próprio processo de resfriamento. Para isto, as condições da formação da carepa, a uniformidade das temperaturas de processo, desde o aquecimento das placas até o final do resfriamento acelerado, as condições de descamação superficial devem ter todo o seu controle de processo executado de uma maneira integrada, que permita a uniformidade do resfriamento ao longo de todo o esboço, nas três dimensões: espessura, largura e comprimento.

Palavras-chave

Laminação de chapas grossas; Planicidade; Resfriamento acelerado; Laminação controlada; Carepa

Referências

1 Robinson I, Kilato J, Hinton J. A recent application of the mulpic® Advanced cooling technology to improve high strength plate steel production. In: Proceedings of the the Iron and Steel Conference and Exposition – AISTech; 2019; Pittsburgh. Pittsburgh: Association for Iron and Steel Technology; 2019. 8 p.

2 Fukuda H, Nakata N, Kijima H, Kuroki T, Fujibayashi A, Takata Y, et al. Effects of surface conditions on spray cooling characteristic. ISIJ International. 2016;56:628-636.

3 Wendelstorf R, Spitzer K, Wendelstorf J. Effect of oxide layers on spray water cooling heat transfer at high surface temperatures. International Journal of Heat and Mass Transfer. 2008;51:4892-490.

4 Lee J. Role of surface roughness in water spray cooling heat transfer of hot steel plate. ISIJ International. 2009;49:1920-1925.

5 Prodanovic V, Militzer M, Kirsch H, Schorr R, Schwinn V. The effect of surface roughness on accelerated cooling. In: Proceedings of the 5th International Conference on Thermomechanical Processing – TMP; 2016 Oct; Milan. Milan: Associazione Italiana di Metalurgia. 8 p.

6 Serizawa Y, Nakagawa S, Kadoya Y, Yamamoto R, Ueno H, Haraguchi Y, et al. Plate cooling Technology for the Thermo Mechanical Control Process (TMCP) in nippon steel & sumitomo metal corporation. Nippon Steel & Sumitomo Metal Technical Report. 2015;110:17-24.

7 Kim H, Truong B, Buongiorno J, Hu L. On the effect of surface roughness height, wettability, and nanoporosity on leidenfrost phenomena. Applied Physics Letters. 2011;98:083121.

8 Qiu Z, He A, Shao J, Xia X. Reduction of residual stress for high-strength low-alloy steel strip based on finite element analysis. Advances in Materials Science and Engineering. 2018;2018:8131909.

9 Schulze V, Vöhringer O, Macherauch E. Residual stresses after quenching. In: Liscic B, Tensi HM, Canale LCF, Totten GE, editors. Quenching theory and technology. 2nd ed. Boca Ratón: CRC Press; 2010. p. 229-288.

10 Boyadjiev I, Thomson P, Lam Y. Computation of the diffusional transformation of continuously cooled austenite for predicting the coefficient Qf thermal expansion in the numerical analysis of thermal stress. ISIJ International. 1996;36:1413-1419.

11 Back J. Modelling and characterisation of the martensite formation in low alloyed carbon steels [thesis]. Luleå, Suécia: Lulea University of Technology; 2017.


Submetido em:
19/02/2020

Aceito em:
11/05/2020

5ee13ba60e88258a5a3195f6 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections