Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20211991
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Comparação do processo de soldagem TIG e A-TIG em um aço baixo carbono com microadição de molibdênio

Comparison of the TIG and A-TIG welding process in a low carbon steel with molybdenum microadition

Mônica Aline Magalhães Gurgel, Ailanderson José Magalhães Gurgel, Vinicius Aleixo Silvestre, Frank de Mello Liberato, Andersan dos Santos Paula

Downloads: 0
Views: 48

Resumo

A soldagem TIG apresenta algumas limitações como a baixa taxa de deposição e penetração rasa nas juntas soldadas. Para suprir essas limitações foi desenvolvido o processo de soldagem A-TIG (Active Flux TIG Welding) onde aplica-se uma fina camada de fluxo sobre a superfície do material antes de ser soldado. Esse fluxo permite, através de mecanismos como a constrição do arco ou a convecção de Marangoni, aumentar a profundidade do cordão de solda. Desta forma, o objetivo deste trabalho é avaliar o incremento na profundidade, comparando a soldagem TIG e A-TIG com fluxo de Cr2 O3 , verificar as características morfológicas da microestrutura e os possíveis efeitos sobre a Ultramicrodureza ao longo da espessura do cordão de solda, em um aço baixo carbono com microadição de molibdênio. Os resultados indicam um ganho em termos de profundidade em comparação com o perfil geométrico da soldagem sem fluxo (TIG), o que corrobora para a boa eficiência do processo de soldagem A-TIG. A microestrutura encontrada na região central da zona fundida do cordão de solda consistiu em ferrita acicular (FA) e ferrita primária (FP) na soldagem TIG, como também a evidência da ferrita com segunda fase (FS) em conjunto com as demais fases na soldagem A-TIG devido à menor taxa de resfriamento resultante de uma maior energia de soldagem neste processo. Pela análise de Ultramicrodureza observou-se os maiores valores de dureza Berkovich (HT-115) e menores de dureza da indentação (Hit), para a soldagem A-TIG, na região do reforço do cordão de solda em relação a raiz, sendo observada influência da profundidade da solda nessas propriedades pelas fases resultantes na microestrutura após resfriamento com menor taxa, devido à maior energia de soldagem.

Palavras-chave

Soldagem; TIG; A-TIG; Fluxo ativo; Ultramicrodureza

Abstract

TIG welding has some limitations, such as the low deposition rate and shallow penetration in the welded joints. To overcome these limitations, the A-TIG (Active Flux TIG Welding) welding process was developed, where a thin flux layer is applied to the material surface before being welded. This flux allows, through mechanisms such as the constriction of the arc or the Marangoni convection, to increase the depth of the weld bead. In this way, the objective of this work is to evaluate the increase in depth, comparing the TIG and A-TIG welding with Cr2 O3 flux, to verify the morphological characteristics of the microstructure and the possible effects on the Ultramicrohardness along the thickness of the weld bead in a low carbon steel with molybdenum microadition. The results indicate a gain in terms of depth compared to the geometric profile of welding without flux (TIG), which corroborates the good efficiency of the A-TIG welding process. The microstructure found in the central region fused weld bead consisted of acicular ferrite (FA) and primary ferrite (FP) in TIG welding, as well as evidence of ferrite with second phase (FS) in conjunction with the other phases in welding A-TIG due to the lower cooling rate resulting from higher welding energy in this process. The Ultramicrohardness analysis showed the highest hardness values of Berkovich hardness (HT-115) and lower indentation hardness (Hit), for A-TIG welding, in the region of the weld bead reinforcement in relation to the root, with influence of the weld depth on these property by the phases resulting in the cooled molten microstructure with a lower rate due to higher welding energy.

Keywords

Welding; TIG; A-TIG; Active Flux; Ultramicrohardness

Referências

1 Vasantharaja P, Vasudevan M. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel. Journal of Nuclear Materials. 2012;421:117-123.

2 Singh AK, Dey V, Rai RN. Techniques to improveweld penetration in TIG welding (a review). Materials Today: Proceedings. 2017;4(2):1252-1259. http://dx.doi.org/10.1016/j.matpr.2017.01.145.

3 Venkatesan JG, Sowmyasari M and Muthupandi V. Effect of ternary fluxes on depth of penetration in A-TIG welding of AISI 409 ferritic stainless steel. Procedia Materials Science. 2014;5:2402-2410.

4 Azevedo AGLD, Ferraresi VA, Faria SJP. Uma revisão sobre o processo de soldagem A-TIG. In: Faculdade de Engenharia Mecânica UFU. Simpósio de Pós-Graduação em Engenharia Mecânica. Uberlandia, Brasil. Uberlândia: UFU; 2006.

5 Lucas W, Howse DS. Activating flux-Increasing the performance and productivity of the TIG and plasma processes. Welding & Metal Fabrication. 1996;64(1):11-17.

6 Paskell T, Lundin C, Castner H. GTAW flux increases weld joint penetration. Welding Journal. 1997;76(4):57-62.

7 Huang HY, Shyu SW, Tseng KH, Chou CP. Evaluation of TIG flux welding on the characteristics of stainless steel. Science and Technology of Welding and Joining. 2005;10(5):566-573.

8 Modenesi PJ, Apolinário ER, Pereira IM. TIG Welding with single-component fluxes. Journal of Materials Processing Technology. 2000;99:260-265.

9 Dong C, Zhu Y, Chai G, Zhang H. Preliminary study on the mechanism of arc welding with the activating flux. Japan: Joining and Welding Research Institute, Osaka University; 2004.

10 Berthier A, Paillard P, Carin M, Pellerin S, Valensi F. TIG and A-TIG welding experimental investigations and comparison with simulation part 2—arc constriction and arc temperature. Science and Technology of Welding and Joining. 2012;17(8):616-621.

11 Heiple CR, Roper JR. Mechanism for minor element effect on GTA fusion zone geometry. Welding Journal. 1982;61(4):97-120.

12 Novicki N, Buschinelli AJA, Paredes RSC. Amanteigamento por aspersão térmica na soldagem em operação de dutos de pequena espessura - estabilidade e penetração do arco voltaico. Soldagem & Inspeção. 2011;16(3):243-255.

13 Lowke JJ, Tanaka M, Ushio M. Mechanisms giving increased weld depth due to a flux. Journal of Physics. D, Applied Physics. 2005;38:3438-3445.

14 Leconte S, Paillard P, Chapelle P, Henrion G, Saindrenan J. Effects of flux containing fluorides on TIG welding process. Science and Technology of Welding and Joining. 2007;12(2):120-126.

15 Anderson PCJ, Wiktorowicz R. Improving productivity with A-TIG welding. USA: TWI and Air Products; 1996.

16 Abinaya S, Verma DK, Noorullah D, Sundararaj P. A-TIG Process and Mechanism-Review Paper IJSRD - International Journal for Scientific Research & Development. 2019;7(1):2321-0613

17 Vasudevan M, Bhaduri AK, Raj B, Prasad Rao K. Genetic algorithm based computational model for optimizing the process parameters in A-TIG welding of 304LN and 316LN stainless steels. Materials and Manufacturing Processes. 2007;22(5):641-649.

18 Chandrasekhar N, Vasudevan M. Intelligent modeling for optimization of A-TIG welding process. Materials and Manufacturing Processes. 2010;25(11):1341-1350.

19 Maduraimuthu V, Vasudevan M, Muthupandi V, Bhaduri AK, Jayakumar T. Study of the effect of activated flux on the microstructure and mechanical properties of mod. 9Cr-1Mo steel. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2012;43(1):123-132.

20 Lin H-L, Wu T-M. Effects of activating flux on weld bead geometry of Inconel 718 alloy TIG welds. Materials and Manufacturing Processes. 2012;27:1457-1461. 21 Sakthivel T, Vasudevan M, Laha K, Parameswaran P, Chandravathi KS, Paneerselvi S, et al. Creep-rupture behavior of 9Cr-1.8W-0.5Mo-VNb P92 ferritic steel weld joint. Materials Science and Engineering A. 2014;591:111-120.

22 Vidyarthy RS, Dwivedi DK. Activating flux tungsten inert gas welding for enhanced weld penetration. Journal of Manufacturing Processes. 2016;22:211-228. http://dx.doi.org/10.1016/j.jmapro.2016.03.012.

23 Liberato FM. Soldagem A-TIG em Aços Inoxidáveis Ferríticos UNS S41003 [dissertação]. Belo Horizonte: UFMG; 2013.

24 Shimadzu. DUH-211/DUH-211S instruction manual: dynamic ultra-micro hardness tester. Kyoto: Shimadzu Corporation; 2009

25 Dallan CB, Damkroger BK. Characterization of welds. In: Davis JR. ASM handbook: welding, brazing, and soldering. Metals Park: American Society for Metals; 1993. p.202-209.

26 Colpaert H. Metalografia dos produtos siderúrgicos comuns. 4ª ed. São Paulo: Edgard Blucher, 2008. 

27 Zhang T, Li Z, Young F, Kim HJ, Li H, Jing H, et al. Global progress on welding consumables for HSLA steel. ISIJ International. 2014;54(7):1472-1484.

28 Lu S, Fujii H, Nogi K. Marangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA welding. Materials Science and Engineering. 2004;380:290-297.

29 Fujii H, Lu S, Sato T, Nogi K. Effect of Oxygen Content in He-O2 Shielding Gas on Weld Shape in Ultra Deep Penetration TIG. Transactions of JWRI. 2008;37(1):19-26.

30 Pichumani S, Srinivasan R. Effect of Pulsed Current and Activated Flux with TIG Welding on the Microstructure and Mechanical Properties of Al-SiC Composite. Indian Journal of Science and Technology. 2015;8(27):1-6.

31 Modenesi PJ, Marquer PV, Santos DB. Introdução à Metalurgia da Soldagem. Belo Horizonte: Universidade Federal de Minas Gerais; 2006.
 


Submetido em:
26/06/2019

Aceito em:
18/05/2021

618ba114a953951daf51e543 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections