Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212123
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Mechanical performance of heavy gauge press hardened steel modified with Nb and Mo additions on GMAW welded joints

Desempenho mecânico de aço endurecido de prensa de medidor pesado modificado com adições de Nb e Mo em juntas soldadas de GMAW

Tiago Führ, Diego Tolotti, Daniela Bertol, João Henrique Corrêa de Souza, Angélica Paola de Oliveira Lopes

Downloads: 0
Views: 655

Abstract

The principle of hot stamping is directly related to the opportunities offered by the chemical composition of boron-alloyed steel due to the process amplitude window for quenching. The 22MnB5 + NbMo steel presents a microstructure composed of ferrite-perlite with yield limit and resistance limit of approximately 450 and 600 MPa, respectively. After the workpiece is hot stamped, the microstructure obtained is completely martensitic, and can reach strength limit values exceeding 1500 MPa. This paper presents a study on the 22MnB5 weldability, mechanical and microstructural properties when designed with Nb and Mo additions, hot formed, and welded using three different wires (AWS A5.28 ER110S-G, E110C-G M H4 and ER70S-6), evaluating these properties through metallographic and macrographic analysis, tensile tests and Charpy impact fractography. According to the results, it is possible to weld 22MnB5 + NbMo press hardened steels, with best condition obtained in this work using ER110S-G wire, considering fracture toughness and satisfactory tensile test results.

Keywords

Presshardening steel; Hot stamping; Welding metallurgy; Alloy design

Resumo

O princípio da estampagem a quente está diretamente relacionado às oportunidades oferecidas pela composição química do aço ligado a boro devido à amplitude da janela no processo de têmpera. O aço 22MnB5 + NbMo apresenta uma microestrutura composta por ferrita-perlita com limite de escoamento e limite de resistência de aproximadamente 450 e 600 MPa, respectivamente. Após a peça estar estampada a quente, a microestrutura obtida é completamente martensítica, podendo atingir valores limite de resistência superiores a 1500 MPa. Este trabalho apresenta um estudo sobre a soldabilidade, propriedades mecânicas e microestruturais do aço 22MnB5 quando refinado com adições de Nb e Mo, conformado a quente e soldado utilizando três diferentes arames classificados pela norma AWS A5.28 (ER110S-G, E110C-G M H4 e ER70S-6), avaliando essas propriedades por meio de análise metalográfica e macrográfica, ensaios de tração e fractografia de impacto Charpy. Os resultados mostram que é possível soldar o aço 22MnB5 + NbMo temperado com sucesso, sendo a melhor condição obtida neste trabalho ao usar o arame ER110S-G, considerando tanto a tenacidade à fratura quanto os resultados satisfatórios nos ensaios de tração.

Palavras-chave

PHS; Estampagem a quente; Metalurgia de solda; Design de liga.

Referências

1 Hein P. A global approach of the finite element simulation of hot stamping. Advanced Materials Research. 2005;6-8:763-770. http://dx.doi.org/10.4028/www.scientific.net/AMR.6-8.763.

2 Mohrbacher H. Property optimization in as-quenched martensitic steel by molybdenum and niobium alloying. Metals. 2018;8(4):234. http://dx.doi.org/10.3390/met8040234.

3 Zhang S, Huang Y, Sun B, Liao Q, Lu H, Jian B, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels. Materials Science and Engineering: A. 2015;626:136-143. http://dx.doi.org/10.1016/j.msea.2014.12.051.

4 Bian J, Mohrbacher H, Zhan S, Lu H, Wang W, Zhang Y, et al. Impact of Nb Microalloying on the Hydrogen Embrittlement of Press Hardening Steel. In: Proceedings of 5th International Conference on Hot Sheet Metal Forming of High Performance Steel; 2015 May 31-June 3; Toronto, Canada. Toronto: Verlag Wissenschaftliche Scripten; 2015. p. 65-74.

5 Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations. Journal of Materials Processing Technology. 2006;177:396-400. http://dx.doi.org/10.1016/j.jmatprotec.2006.04.041.

6 Souza JHC, Almeida DT, Mohrbacher H, Suikkanen P. Development of process techniques for press hardening of thick plates. In: New Developments in Sheet Metal Forming Conference; 2018 May 9th-10th; Stuttgart, Germany. Stuttgart: MAT INFO Werkstoff- Informationsgesellschaft; 2018.

7 Karbasian H, Tekkaya AE. A review on hot stamping. Journal of Materials Processing Technology. 2010;210:2103-2118. http://dx.doi.org/10.1016/j.jmatprotec.2010.07.019.

8 Silva CA, Nascimento RCR, Martins MS, Freitas MCS. Influence of temperature on ductile-fragile behavior. Materials Science Forum. 2014;802:383-387. http://dx.doi.org/10.4028/www.scientific.net/MSF.802.383.

9 Zhao YJ, Su YM, Liu M, Hu ZL, Tang P. Ductile-to-brittle transition and impact fracture behavior of 3Mn–Si–Ni low carbon martensitic steel. Strength of Materials. 2019;51:291-299. http://dx.doi.org/10.1007/s11223-019-00075-8.

10 Lin L, Li B, Zhu G, Kang Y, Liu R. Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5. Materials Science and Engineering: A. 2018;721:38-46. http://dx.doi.org/10.1016/j.msea.2018.02.021.


Submetido em:
10/06/2019

Aceito em:
19/07/2021

6182f7fca95395514a0b49e4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections