Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212271
Tecnologia em Metalurgia, Materiais e Mineração
Original Article

Aplicação de ondas elementais no estudo de vibrações geradas por desmontes de rochas

Application of signature waves on the study of vibrations generated by rock blasting

Paulo José Costa Couceiro Júnior, Eraldo Florêncio da Silva Júnior

Downloads: 3
Views: 840

Resumo

A aplicação de cargas explosivas sequenciadas para a escavação e fragmentação de rochas constitui uma operação unitária essencial na mineração. Entretanto, a liberação de energia resultante desse processo gera, entre outros fenômenos, um evento sísmico adverso que pode condicionar a viabilidade do projeto. Distintas técnicas de controle e previsão dos níveis de vibrações foram desenvolvidas nas últimas décadas, tais como a aplicação de ondas elementais na modelagem sísmica resultante de desmontes de rochas. A superposição de ondas individuais na conformação de histórias temporais das velocidades de partícula permite a verificação de distintos aspectos do desmonte, tais como o efeito dos tempos de retardo e sequenciamento das cargas explosivas, orientação da propagação das ondas sísmicas, e incertezas envolvidas no projeto, entre outros. Neste trabalho, um modelo de ondas elementais, baseado em variáveis estocásticas compatíveis com simulações Monte Carlo, é apresentado com o intuito de prever os níveis de vibrações mais prováveis de um desmonte de rochas. Finalmente, esta metodologia é exemplificada em um exemplo de aplicação, cujo níveis das vibrações necessitavam medidas preditivas mais fiáveis para garantir a viabilidade da obra.

Palavras-chave

Ondas elementais; Vibrações; Desmonte de rocha.

Abstract

The application of sequential explosive charges for excavation and fragmentation of rocks constitute an essential unit operation in mining. However, the liberation of energy resulting from this process creates, within other phenomena, an adverse seismic event that may condition the viability of the project. Different control and predicting vibration techniques have been developed in the last decades, such as the application of signature waves in modeling vibrations resulting from rock blasting. The superposition of individual waves for the conformation of particle velocities time-histories allows the verification of different blasting aspects, such as the effect of delays and sequence of detonation, orientation of the propagation path of waves, and uncertainties involved in the project, and others. In this work, a stochastic signature hole model is presented together with Monte Carlo simulations technique, which permits the prediction of the most probable vibration levels of a given blast. Finally, this methodology is illustrated in an example of application whose vibration levels required more reliable predictive measures to ensure the viability of the work.

Keywords

Signature wave; Vibrations; Rock blasting.

References

1 Andrews AB. Design criteria for sequential blasting. In: Proceedings of the 7th Annual Conference on Explosives and Blasting Techniques; 1981 January 19-23; Phoenix, United States. Phoenix: Society of Explosives Engineers; 1981. p. 173-192.

2 Anderson D, Winzer SW, Ritter A. Synthetic delay versus frequency plots for predicting ground vibration from blasting. In: Proceedings of the of the 3rd International Symposium on Computer-Aided Seismic Analysis and Discrimination; 1983 June 15-17; Washington, United Sates. Los Angeles: IEEE Computer Society; 1983. p. 70-74.

3 Anderson D, Winzer SW, Ritter AP, Reil JW. A method for site-specific prediction and control of ground vibration from blasting. In: Proceedings of the 11th Annual Conference on Explosives and Blasting Techniques; 1985 January 27-February 1; San Diego, United States. San Diego: Society of Explosives Engineers; 1985.

4 Crenwelge OEJ. Use of single charge vibration data to interpret explosive excitation and ground transmission characteristics. In: Proceedings of the 14th Annual Conference on Explosives and Blasting Techniques; 1985 January 31-February 5; Anaheim, United Sates. Anaheim: Society of Explosives Engineers; 1988. p. 151-160.

5 Hinzen K, Lüdeling R. A new approach to predict and reduce blast vibration by modeling of seismograms and using a new electronic initiation system. In: Proceedings of the 13th Annual Conference on Explosives and Blasting Techniques; 1987 February 2-5; Miami, United States. Miami: Society of Explosives Engineers; 1987. p. 144-161.

6 Blair DP. The measurement, modelling and control of ground vibrations due to blasting. In: Proceedings of the Second International Symposium on Rock Fragmentation by Blasting; 1987 August 23-26; Keystone, United Sates. Bethel: Society for Experimental Mechanics; 1987. p. 88-101.

7 Blair DP. Statistical models for ground vibration and airblast. International Journal for Blasting and Fragmentation. 1999;3(4):335-364.

8 Silva-Castro JJ. Blast vibration modeling using improved signature hole technique for bench blast [thesis]. Kentucky: College of Engineering, University of Kentucky; 2012.

9 Silva-Castro JJ. A different methodology to control and predict ground vibrations from mine blasting. Canadian Geotechnical Journal. 2019;56(7):929-941.

10 Spathis AT. A brief review of the measurement, modelling and management of vibrations produced by blasting. In: FRAGBLAST. Proceeding of the 9th International Symposium on Rock Fragmentation by Blasting; 2009 September 13-17; Granada, Spain. Granada: CRC Press; 2010; p. 1-11.

11 Yang R, Scovira D. A model for near and far field blast vibration based on multiple seed waveform and transfer functions. International Journal for Blasting and Fragmentation. 2010;4(2):91-116.

12 Silva-Castro JJ, Li L. Deconvolution of blast vibration signals by wiener filtering. Inverse Problems in Science and Engineering. 2018;26(10):1522-1538.

13 Li L. Synthesis of single-hole vibration waveforms from a mining blast [thesis]. Kentucky: College of Engineering, University of Kentucky; 2018.

14 Anderson DA, Brinckerhoff P. Signature hole blast vibration control: twenty years hence and beyond. In: Proceedings of the 34th Annual Conference on Explosives and Blasting Techniques; 2008 January 27-30; New Orleans, United Sates. New Orleans: International Society of Explosives Engineer; 2008. p. 1-12.

15 Agrawal H, Mishra AK. An innovative technique of simplified signature hole analysis for prediction of blastinduced ground vibration of multi-hole/production blast: an empirical analysis. Natural Hazards. 2020;100:111-132.

16 Blair DP. Some problems associated with standard charge weight vibration scaling laws. In: Proceeding of the 3rd International Symposium no Rock Fragmentation by Blasting; 1990 August 26-31; Brisbane, Australia. Brisbane: The Australasian Institute of Mining and Metallurgy; 1990. p. 149-158.

17 Blair DP. Vibration modelling and mechanisms for wall control blasting. In: Proceeding of the 12th International Symposium on Rock Fragmentation by Blasting; 2018 June 11-13; Luleå, Sweden. Luleå: Luleå University of Technology; 2018. p. 269-280.

18 Ambreseys NN, Hedron AJ. Dynamic behavior of rock masses. In: Stagg KC, Zienkiewicz O, editores. Rock mechanics in engineering practice. London: John Wiley & Sons; 1968.

19 Dowding CH. Blast vibration monitoring and control. Englewood Cliffs: Prentice-Hall; 1985


Submitted date:
12/27/2019

Accepted date:
09/13/2020

61167e1aa953951ce26bb2c5 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections