Caracterização do defeito spalling e correlação com a região da solda aluminotérmica em trilho ferroviário
Gregory de Oliveira Miranda, Vinicius Silva dos Reis, Carlos Vinicius de Paes Santos, Fábio Alves Rabelo Júnior, Edgar Costa Cardoso, José Maria do Vale Quaresma
Resumo
Dentre os defeitos provenientes de fadiga de contato de rolamento (RCF) nos trilhos ferroviários, o spalling se apresenta como um dos mais severos devido às suas características morfológicas. Este trabalho envolve a análise de um amostra de solda aluminotérmica de trilho ferroviário contendo um defeito do tipo spalling, nas caracterizações buscou-se fazer a correlação entre o defeito, a microestrutura e as propriedades mecânicas na região do trilho. Foram realizados ensaios de dureza e microdureza, além da caracterização microestrutural e fractográfica via microscopia óptica. Os resultados mostraram que o spalling possui uma forte tendência em ocorrer na região da Zona Termicamente Afetada (ZTA), expressa pela variação microestrutural e dureza ao longo da amostra e as trincas são influenciadas pela microestrutura deformada da superfície do trilho
Palavras-chave
Referências
1 Reddy V, Chattopadhyay G, Larsson-Kråik PO, Hargreaves DJ. Modelling and analysis of rail maintenance cost. International Journal of Production Economics. 2007;105(2):475-482.
2 Lewis R, Olofsson U. Wheel-rail interface handbook. 1st ed. Washington: Woodhead Publishing; 2009.
3 Seo JW, Jun HK, Kwon SJ, Lee DH. Rolling contact fatigue and wear of two different rail steels under rollingsliding contact. International Journal of Fatigue. 2016;83:184-194.
4 Magel E, Mutton P, Ekberg A, Kapoor A. Rolling contact fatigue, wear and broken rail derailments. Wear. 2016;366-367:249-257.
5 Ekberg A, Kabo E, Andersson H. An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue & Fracture of Engineering Materials & Structures. 2002;25(10):899-909.
6 Zerbst U, Mädler K, Hintze H. Fracture mechanics in railway applications: an overview. Engineering Fracture Mechanics. 2005;72(2):163-194.
7 Steenbergen M. Rolling contact fatigue: spalling versus transverse fracture of rails. Wear. 2017;380-381:96-105.
8 Ekberg A, Kabo E, Andersson H. An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue & Fracture of Engineering Materials & Structures. 2002;25(10):899-909.
9 Ekberg A, Kabo E, Nielsen JC, Lundén R. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation. International Journal of Solids and Structures. 2007;44(24):7975-7987.
10 Seo J, Kwon S, Lee D. Effects of surface defects on rolling contact fatigue of rail. Procedia Engineering. 2011;10:1274-1278.
11 Reis L, Li B, De Freitas M. A multiaxial fatigue approach to Rolling Contact Fatigue in railways. International Journal of Fatigue. 2014;67:191-202.
12 Yang R, Cao S, Kang W, Li J, Jiang X. Mechanism analysis of spalling defect on rail surface under rolling contact conditions. Mathematical Problems in Engineering. 2018;2018:7012710.
13 Wang K, Zhai W, Lv K., Chen Z. Numerical investigation on wheel-rail dynamic vibration excited by rail spalling in high-speed railway. Shock and Vibration. 2016;2016:9108780 .
14 Franklin FJ, Kapoor A. Modelling wear and crack initiation in rails. Proceedings of the Institution of Mechanical Engineers. Part F, Journal of Rail and Rapid Transit. 2007;221(1):23-33.
15 Kapoor A. Wear by plastic ratchetting. Wear. 1997;212(1):119-130.
16 Mazzù A, Donzella G. A model for predicting plastic strain and surface cracks at steady-state wear and ratcheting regime. Wear. 2018;400-401:127-136.
17 Mutton P, Cookson J, Qiu C, Welsby D. Microstructural characterisation of rolling contact fatigue damage in flashbutt welds. Wear. 2016;366-367:368-377.
18 Karguin VA, Tikhomirova LB, Galay MS, Kuznetsova YS. Improving service properties of welded joints produced by aluminothermic welding. Welding International. 2015;29(2):155-157.
19 Sarikavak Y, Turkbas OS, Cogun C. Influence of welding on microstructure and strength of rail steel. Construction & Building Materials. 2020;243:118220.
20 American Railway Engineering and Maintenance-of-Way Association. Manual for railway engineering. Lanham: AREMA; 2010.
21 Merıç C, Atık E, Şahın S. Mechanical and metallurgical properties of welding zone in rail welded via thermite process. Science and Technology of Welding and Joining. 2002;7(3):172-176.
22 Alves LHD, Tepedino TC, Masoumi M, Tressia G, Goldenstein H. Metallurgical and tribological aspects for squat formation in the aluminothermic weld HAZ edges of rails welded using aluminothermy. Industrial Lubrication and Tribology. 2020;72(9):1123-1131.
23 Seo JW, Jun HK, Kwon SJ, Lee DH. Rolling contact fatigue and wear of two differents rail steels under rollingsliding contact. International Journal of Fatigue. 2016;83:184-194.
24 Ekberg A, Akesson B, Kabo E. Wheel/rail rolling contact fatigue: probe, predict, prevent. Wear. 2014;314(1-2):2-12.
25 Akselsen OM, Grong Ø, Solberg JK. Structureproperty relationships in intercritical heat affected zone of lowcarbon microalloyed steels. Materials Science and Technology. 1987;3(8):649-655.
26 Liu Y, Tsakadze Z, Hoh HJ, Pang JHL, Christian I, Ng TX, et al. Mechanical properties and microstructural analysis of rail thermite welding joints. In: 2018 International Conference on Intelligent Rail Transportation (ICIRT); 2018; Singapore. New York: IEEE; 2018. p. 1-4.
27 Dylewski B, Risbet M, Bouvier S. The tridimensional gradient of microstructure in worn rails-experimental characterization of plastic deformation accumulated by RCF. Wear. 2017;392-393:50-59.
Submetido em:
27/05/2020
Aceito em:
19/10/2020