Síntese de cerâmicas bifásicas de fosfato de cálcio pelo método Pechini
Synthesis of calcium phosphate biphasic ceramics by Pechini method
José Rosa de Souza Farias, Geysivana Késsya Garcia Carvalho, Ycaro Breno Alves de Almeida, Josy Anteveli Osajima Furtini, Edson Cavalcanti Silva Filho, Aluska do Nascimento Simões Braga
Resumo
Os fosfatos de cálcio (CaP) são semelhantes com a parte inorgânica de uma matriz óssea, característica importante para um biomaterial. As fases de CaP mais amplamente utilizadas são a hidroxiapatita (HAp) e o beta fosfato tricálcico (β-TCP). A associação da biocerâmica HAp/β-TCP é uma alternativa promissora para uso na regeneração e enxertos ósseos. Assim, o objetivo deste trabalho foi sintetizar biocerâmicas de HAp/β-TCP via método Pechini, avaliando a influência de diferentes solventes na síntese. As caracterizações foram realizadas por difração de raios X (DRX), espectroscopia de infravermelho com transformada de Fourier (FTIR), análises termogravimétricas (TG/DTG) e microscopia eletrônica de varredura (MEV). Os resultados comprovaram que o método de síntese é eficiente na formação da cerâmica bifásica de HAp/β-TCP, independentemente do tipo de solvente utilizado, água ou álcool etílico, resultando na formação de nanopartículas agrupadas de aspecto morfológico poroso e formado por grãos irregulares.
Palavras-chave
Abstract
Calcium phosphates (CaP) are similar to the inorganic part of a bone matrix, an important characteristic for a biomaterial. The most widely used CaP phases are hydroxyapatite (HAp) and tricalcium beta phosphate (β-TCP). The combination of biochemistry HAp/β-TCP is a promising alternative for use in bone regeneration and grafting. Thus, the objective of this work was to synthesize HAp/β-TCP bioceramics via Pechini method, evaluating the influence of different solvents on synthesis. The characterizations were performed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TG/DTG) and scanning electron microscopy (SEM). The results proved that the synthesis method is efficient in the formation of biphasic ceramic of HAp/β-TCP, regardless of the type of solvent used, water or ethyl alcohol, resulting in the formation of grouped nanoparticles with a porous morphological aspect and forming irregular grains.
Keywords
References
1 Cheng L, Shi Y, Ye F, Bu H. Osteoinduction of calcium phosphate biomaterials in small animals. Materials Science and Engineering C. 2013;33(3):1254-1260.
2 Cheung HS, Haak MH. Growth of osteoblasts on porous calcium phosphate ceramic: an in vitro model for biocompatibility study. Biomaterials. 1989;10(1):63-67.
3 Zhu Y, Zhang K, Zhao R, Ye X, Chen X, Xiao Z, et al. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials. 2017;147:133-144.
4 Gómez-Barrena E, Rosset P, Gebhard F, Hernigou P, Baldini N, Rouard H, et al. Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials. 2019;196:100-108.
5 Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomaterialia. 2017;53:1-12.
6 Shim KS, Kim HJ, Kim SE, Park K. Park k. Simple surface biofunctionalization of biphasic calcium phosphates for improving osteogenic activity and bone tissue regeneration. Journal of Industrial and Engineering Chemistry. 2018;68:220-228.
7 Neto AS, Fonseca AC, Abrantes JCC, Coelho JFJ, Ferreira JMF. Surface functionalization of cuttlefish bonederived biphasic calcium phosphate scaffolds with polymeric coatings. Materials Science and Engineering C. 2019;105:110014.
8 Ebrahimi M, Botelho MG, Dorozhkin SV. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Materials Science and Engineering C. 2017;71:1293-1312.
9 Jmal N, Bouaziz J. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method. Materials Science and Engineering C. 2017;71:279-288.
10 Cheng K, Zhang S, Weng WJ. Sol-gel prepared β-TCP/FHA biphasic coatings. Thin Solid Films. 2006;515(1):135-140.
11 Chen JD, Wang YJ, Chen XF, Ren L, Lai C, He W, et al. A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Materials Letters. 2011;65(12):1923-1926.
12 Onoda H, Yamazaki S. Homogenous hydrothermal synthesis of calcium phosphate with calcium carbonate and corbicula shells. Journal of Asian Ceramic Societies. 2016;4(4):403-406.
13 Higuita LP, Vargas AF. Effect of addition of calcium ions and hydrothermal treatment on the morphology of calcium phosphates. Materials Letters. 2017;190:146-149.
14 Titorenkova R, Dyulgerova E, Petkova V, Ilieva R. Carbonation and dehydroxylation of apatite during high energy milling of biphasic Ca-phosphate ceramics. Ceramics International. 2019;45(6):7025-7033.
15 Mohammadi Z, Mesgar ASM, Disfani FR. Preparation and characterization of single phase, biphasic and triphasic calcium phosphate whisker-like fibers by homogeneous precipitation using urea. Ceramics International. 2016;42(6):6955-6961.
16 Webler GD, Zapata MJM, Agra LC, Barreto E, Silva AOS, Hickmann JM, et al. Characterization and evaluation of cytotoxicity of biphasic calcium phosphate synthesized by a solid state reaction route. Current Applied Physics. 2014;14(6):876-880.
17 Ho WF, Hsu HC, Hsu SK, Hung CW, Wu SC. Calcium phosphate bioceramics synthesized from eggsshell powders through a solid state reaction. Ceramics International. 2013;39(6):6467-6473.
18 Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A. Synthesis of calcium phosphate nanoparticles in deep-eutectic choline chloride-urea medium: Investigating the role of synthesis temperature on phase characteristics and physical properties. Ceramics International. 2016;42(2):2780-2788.
19 Drevet R, Jaber NB, Fauré J, Tara A, Larbi BC, Benhayoune H. Electrophoretic deposition (EPD) of nanohydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surface and Coatings Technology. 2016;301:94-99.
20 Omori Y, Okada M, Takeda S, Matsumoto N. Fabrication of dispersible calcium phosphate nanocrystals via a modified Pechini method under non-stoichiometric conditions. Materials Science and Engineering C. 2014;42:562-568.
21 Guo R, Huang J, Chen X, Luo Q, Luo L, Xiong Y, et al. Pechini sol-gel synthesis of La2CaB8O16:Eu3+ red phosphor and its photoluminescence spectral properties. Journal of Luminescence. 2019;206:15-20.
22 Scherrer P. Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. 1918;3:98-100.
23 Pechini MP. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. United States patent US 3330697. 1967.
24 Aminzare M, Eskandari A, Baroonian MH, Berenov A, Razavi Hesabi Z, Taheri M, et al. Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceramics International. 2013;39(3):2197-2206.
25 Santos ML, Florentino AO, Saeki MJ, Aparecida AH, Fook MVL, Guastaldi AC. Síntese de hidroxiapatita pelo método sol gel utilizando precursores alternativos: nitrato de cálcio e ácido fosfórico. Eclética Química. 2005;3(30):29-35.
26 Roopalakshmi S, Ravishankar R, Belaldavar S, Prasad RGSV, Phani AR. Investigation of structural and morphological characteristics of hydroxyapatite synthesized by sol-gel process. Materials Today: Proceedings. 2017;4:12026-12031.
27 Chakraborty R, Seesala VS, Sen M, Sengupta S, Dhara S, Saha P, et al. MWCNT reinforced bone like calcium phosphate: hydroxyapatite composite coating developed through pulsed electrodeposition with varying amount of apatite phase and crystallinity to promote superior osteoconduction, cytocompatibility and corrosion protection performance compared to bare metallic implant surface. Surface and Coatings Technology. 2017;325(25):496-514.
28 Wang J, Su Y, Xu L, Li D. Fabrication and preliminary evaluation of the osteogenic potential for micro-/nanostructured porous BCP ceramics. Ceramics International. 2020;46(4):4801-4812.
29 Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23(4):1065-1072.
30 Stötzel C, Müller FA, Reinert F, Niederdraenk F, Barralet JE, Gbureck U. Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids and Surfaces. B, Biointerfaces. 2009;74(1):91-95.
31 Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. Journal of Functional Biomaterials. 2010;31(7):1465-1485.
32 Phatai P, Futalan CM, Utara S, Khemthong P, Kamonwannasit S. Structural characterization of cerium-doped hydroxyapatite nanoparticles synthesized by ultrasonic-assisted sol-gel technique. Results in Physics. 2018;10:956-963.
33 Rameshbabu N, Kumar TSS, Prabhakar TG, Sastry VS, Murty KVGK, Rao KP. Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. Journal of Biomedical Materials Research. Part A. 2007;80(3):581-591.
34 Ben-Arfa BAE, Fernandes HR, Miranda Salvado IM, Ferreira JMF, Pullar RC. Synthesis andbioactivity assessment of high silica content quaternary glasses with Ca: P ratios of 1.5 and 1.67, made by a rapid sol-gelprocess. Journal of Biomedical Materials Research. Part A. 2017;70:796-804.
35 Piazza RD, Pelizaro TAG, Rodriguez-Chanfrau JE, Serna AAL, Veranes-Pantoja Y, Guastaldi AC. Calcium phosphates nanoparticles: the effect of freeze-drying on particle size reduction. Materials Chemistry and Physics. 2020;239:122004.
36 Pei L, Zhang X, Zhang L, Zhang Y, Xu Y. Solvent influence on the morphology and supercapacitor performance of the nickel oxide. Materials Letters. 2016;162:238-241.
37 Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering. 2014;43:153-163.
38 Manjubala I, Sivakumar M. In-situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation. Materials Chemistry and Physics. 2001;71(3):272-278.
39 Londoño-Restrep SM, Zubieta-Otero LF, Jeronimo-Cruz R, Mondragon MA, Rodriguez-García ME. Effect of the crystal size of biogenic hydroxyapatites on IR and Raman spectra. Materials Science and Engineering. 2014;43:153-163.
40 Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering: C. 2014;43:153-163.
Submitted date:
04/26/2020
Accepted date:
10/17/2020