Formation of hydrogen blisters during the solution treatment for aluminum alloys
Daniel Diehl, Eduardo Luis Schneider, Thomas Gabriel Rosauro Clarke
Abstract
The solution treatment of aluminum alloys can be restricted by the presence of porosity defects caused by the moisture present in the process or by the hydrated front on the material surface. Hydrogen blisters cause deleterious effects on mechanical properties and surface finish. However, the formation of bubbles in solid aluminum is not caused only by the known reaction 2Al+3H2 O=3H2 +Al2 O3 , as it does not explain the interaction of the aluminum oxide layer with the formation mechanisms. In addition, the literature approaches show that there is more than one mechanism for the formation of these defects, but no work has made an association between them. Thus, the objective of this work is to carry out extensive research on the state of the art of hydrogen blister formation in aluminum alloys during the solubilization heat treatment. Contemplating different proposed mechanisms of bubble formation on the surface and structure, the analysis of this association of approaches indicated that the mechanisms depend on both permeability, where the hydrated oxide front creates passage for the formation of blister in the sublayer, as well as diffusion and hydrogen solubility in the microstructure.
Keywords
References
1 Ulanovskiy I. Hydrogen diffusion and porosity formation in aluminum. Moscou: MIS&S; 2015 [cited 2020 mar 14]. Available at: http://eanw.info/enzilkopedia/ulanovskii/ulanovsky-hydrogen.pdf
2 Alefeld G, Völkl J. Hydrogen in metals I - Basic properties. Berlin: Springer-Verlag; 1978 [cited 2020 feb 3]. Available at: https://link.springer.com/book/10.1007/3-540-08705-2.
3 Bochkaryova A, Li Y, Barannikova S, Zuev L. The effect of hydrogen embrittlement on the mechanical properties of aluminum alloys. IOP Conference Series Materials Science and Engineering. 2015;71(1):12-57. https://doi.org/10.1088/1757-899X/71/1/012057.
4 Preez S, Bessarabov D. Hydrogen generation of mechanochemically activated Al-Bi-In composites. International Journal of Hydrogen Energy. 2017;42(26):16589-16602. https://doi.org/10.1016/j.ijhydene.2017.05.211.
5 Bochkaryova AV, Li YV, Barannikova SA, Zuev LB. The effect of hydrogen embrittlement on the mechanical properties of aluminum alloy. IOP Conference Series Materials Science and Engineering. 2015;71:012057. https://doi.org/10.1088/1757-899X/71/1/012057.
6 Krishnan M, Raja V. Role of temper conditions on the hydrogen embrittlement behavior of AA 7010. Corrosion Science. 2019;152:211-217. https://doi.org/10.1016/j.corsci.2019.03.004.
7 Shimizu K, Toda H, Fujihara H, Hirayama K, Uesugi K, Takeuchi A. Hydrogen partitioning behavior and related hydrogen embrittlement in Al-Zn-Mg alloys. Engineering Fracture Mechanics. 2019;216:106503. https://doi.org/10.1016/j.engfracmech.2019.106503.
8 Li M, Xie D, Ma E, Li J, Zhang X, Shan Z. Effect of hydrogen on the integrity of aluminium-oxide interface at elevated temperatures. Nature Communations. 2017 [cited 2020 mar 30];8:1-7. Available at: https://www.nature.com/articles/ncomms14564.
9 Wang L, Yan H, Teng J, Liu X, Wang X, Su Y, et al. Effect of hydrogen on interfacial reaction between Ti-6Al-4V alloy melt and graphite mold. Journal of Materials Research and Technology. 2020;9(3):2623-2634. https://doi.org/10.1016/j.jmrt.2020.02.071.
10 Alba-Baena N, Eskin D. Kinetics of ultrasonic degassing of aluminum alloys. In: Sadler B, editor. Light metals 2013: the minerals, metals & materials series. Berlim: Springer Cham; 2016. p. 957-962. https://doi.org/10.1007/978-3-319-65136-1_162.
11 Yamabe J, Awane T, Murakami Y. Hydrogen trapped at intermetallic particles in aluminum alloy 6061-T6 exposed to high-pressure hydrogen gas and the reason for high resistance against hydrogen embrittlement. International Journal of Hydrogen Energy. 2017;42(38):24560-24568. https://doi.org/10.1016/j.ijhydene.2017.08.035.
12 Tiryakioğlu M. The effect of hydrogen on pore formation in aluminum alloy castings: myth versus reality. Metals. 2020;10(3):368. https://doi.org/10.3390/met10030368.
13 Kudinova N, Polyanskiy V, Polyanskiy A, Yakovlev Y. Determining the bound energies of dissolved hydrogen on the basis of a multichannel diffusion model in a solid. St. Petersburg Polytechnical University Journal: Physics and Mathematics. 2015;1(4):347-355. https://doi.org/10.1016/j.spjpm.2016.02.003.
14 Su H, Bhuiyan S, Toda H, Uesugi K, Takeuchi A, Watanabe Y. Influence of intermetallic particles on the initiation and growth behavior of hydrogen micropores during high-temperature exposure in Al-Zn-Mg-Cu aluminum alloys. Scripta Materialia. 2017;135:19-23. https://doi.org/10.1016/j.scriptamat.2017.03.020.
15 Su H, Toda H, Shimizu K, Uesugi K, Takeuchi A, Watanabe, Y. Assessment of hydrogen embrittlement via imagebased techniques in Al-Zn-Mg-Cu aluminum alloys. Acta Materialia. 2019;176:96-108. https://doi.org/10.1016/j. actamat.2019.06.056.
16 Chung C, Tsai C, Hsu C, Kuo E, Chen Y, Chung I. Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature. Corrosion Science. 2017;125:40-47. https://doi.org/10.1016/j.corsci.2017.05.027.
17 Polyanskii V. Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys. Materials Science. 1986; 21:301-309. https://doi.org/10.1007/BF00726550.
18 Talbot D, Anyalebechi P. Solubility of hydrogen in liquid aluminium. Materials Science and Technology. 1988;4(1):1-4. https://doi.org/10.1179/mst.1988.4.1.1.
19 Hu X, Zhu Q, Midson S, Atkinson H, Dong H, Zhang F et al. Blistering in semi-solid die casting of aluminium alloys and its avoidance. Acta Materialia. 2017;124:446-455. https://doi.org/10.1016/j.actamat.2016.11.032.
20 MacKenzie D. Metallurgy of heat treatable aluminum alloys. In: Anderson K, Weritz J, Kaufman J, editors. Aluminum science and technology. Vol. 2A. USA: ASM International; 2018. p. 411-437. https://doi.org/10.31399/asm.hb.v02a.a0006509.
21 Diehl D, Köhler C, Schneider EL, Clarke TGR. Eddy current at high temperatures for in-situ control of heat treatment precipitation in hardening aluminum alloys. 2020. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2020.3008629.
22 Wang H, Leung D, Leung M, Ni M. A review on hydrogen production using aluminum and aluminum alloys. Renewable and Sustainable Energy Reviews. 2009;13(4):845-853. https://doi.org/10.1016/j.rser.2008.02.009.
23 Alviani V, Setiani P, Uno M, Oba M, Hirano N, Watanabe N et al. Mechanisms and possible applications of the Al–H2O reaction under extreme pH and low hydrothermal temperatures. International Journal of Hydrogen Energy. 2019;44(57):29903-29921. https://doi.org/10.1016/j.ijhydene.2019.09.152.
24 Francisco U, Larrosa N, Peel M. Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449. Materials Science and Engineering: A. 2020;772:138662. https://doi.org/10.1016/j.msea.2019.138662.
25 Burns J, Bush R, Ai J, Jones J, Lee Y, Gangloff R. Effect of water vapor pressure on fatigue crack growth in Al–Zn– Cu–Mg over wide-range stress intensity factor loading. Engineering Fracture Mechanics. 2015;137:34-55. https://doi.org/10.1016/j.engfracmech.2014.11.009.
26 Ta N, Zhang L, Li Q, Lu Z, Lin Y. High-temperature oxidation of pure Al: kinetic modeling supported by experimental characterization. Corrosion Science. 2018;139:355-369. https://doi.org/10.1016/j.corsci.2018.05.013.
27 Corrigall J, St Louis C, Coleman C, McRae G. A chemical potential probe to determine the solubility of hydrogen in metals: an example with Copper. Journal of Phase Equilibria and Diffusion. 2020;41:27-34. https://doi.org/10.1007/s11669-019-00776-2.
28 Nguyen D, Vo D. Comprehensive finite element modeling for pulsed magnet design using COMSOL and Java. IEEE Transactions on Applied Superconductivity. 2020;30(4):1-5. https://doi.org/10.1109/TASC.2020.2971935.
29 Hardwick D, Taheri M, Thompson A, Bernstein I. Hydrogen embrittlement in a 2000-series aluminum alloy. Metallurgical Transactions A. 1982;13:235-239. https://doi.org/10.1007/BF02643313.
30 Young G, Scully J. The diffusion and trapping of hydrogen in high purity aluminum. Acta Materialia. 1998;46(18):6337-6349. https://doi.org/10.1016/S1359-6454(98)00333-4.
31 Steward S. Review of hydrogen isotope permeability through materials. Califórnia: Lawrence Livermore National Laboratory; 1983. p. 1-28. https://doi.org/10.2172/5277693.
32 Anyalebechi PN. Critical review of reported values of hydrogen diffusion in solid and liquid aluminum and its alloys. TMS Light Metals. 2003;857-872.
33 Anyalebechi P. Analysis of the effects of alloying elements on hydrogen solubility in liquid aluminum alloys. Scripta Metallurgica et Materialia. 1995;33(8):1209-1216. https://doi.org/10.1016/0956-716X(95)00373-4.
34 He T, Chen W, Wang W, Ren F, Stock H. Effect of different Cu contents on the microstructure and hydrogen production of Al–Cu-Ga-In-Sn alloys for dissolvable materials. Journal of Alloys and Compounds. 2020;821:153489. https://doi.org/10.1016/j.jallcom.2019.153489.
35 Marchi C, Somerday B, Robinson S. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. International Journal of Hydrogen Energy. 2007;32(1):100-116. https://doi.org/10.1016/j.ijhydene.2006.05.008.
36 Rudomilova D, Prošek T, Salvetr P, Knaislová A, Novák P, Kodým R, et al. The effect of microstructure on hydrogen permeability of high strength steels. Mater and Corros. 2019:1-9. https://doi.org/10.1002/maco.201911357.
37 Jena P, Satterthwaite C. Eletronic structure and properties of hydrogen in metals. USA: Springer; 1983. https://doi.org/10.1007/978-1-4684-7630-9.
38 Nie H, Zhang S, Schoenitz M, Dreizin E. Reaction interface between aluminum and water. International Journal of Hydrogen Energy. 2013;38(26):11222-11232. https://doi.org/10.1016/j.ijhydene.2013.06.097.
39 Wang W, Chen W, Zhao X, Chen D, Yang K. Effect of composition on the reactivity of Al-rich alloys with water. International Journal of Hydrogen Energy. 2012;37(24):18672-18678. https://doi.org/10.1016/j.ijhydene.2012.09.164.
40 Vargel C. Corrosion of aluminium. USA: Elsevier; 2004. 626 p.
41 Zaffaroni G, Gudla V, Din R, Ambat R. Characterization of blisters on powder coated aluminium AA5006 architectural profiles. Engineering Failure Analysis. 2019;103:347-360. https://doi.org/10.1016/j.engfailanal.2019.04.039.
42 Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E. Structure and stability of aluminum hydroxides: a theoretical study. Journal of Physical Chemistry B. 2002;106(20):5155-5162. https://doi.org/10.1021/jp014182a.
43 Mozetic H, Fonseca E, Schneider EL, Kindlein W Jr, Schaeffer L. The use of magnetic field annealing on nodular cast iron for speaker cores. IOS Press. 2011:51-65. http://dx.doi.org/10.3233/JAE-2011-1395.
44 Zhao Q, Zhao J, Cheng X, Huang Y, Lu L, Li X. Galvanic corrosion of the anodized 7050 aluminum alloy coupled with the low hydrogen embrittlement CdTi plated 300M steel in an industrial-marine atmospheric environment. Surface and Coatings Technology. 2020;382:125171. http://dx.doi.org/10.1016/j.surfcoat.2019.125171.
45 Beck A, Heine M, Caule E, Pryor M. The kinetics of the oxidation of Al in oxygen at high temperature. Corrosion Science. 1967;7(1):1-22. http://dx.doi.org/10.1016/S0010-938X(67)80066-0.
46 Wang Y, Xu K, Li L. Inhibition of the reaction between aluminium dust and water based on the HIM. RSC Advances. 2017;7:33327-33334. http://dx.doi.org/10.1039/c7ra04787h.
47 Teng H, Lee T, Chen Y, Wang H, Cao G. Effect of Al(OH)3 on the hydrogen generation of aluminum–water system. Journal of Power Sources. 2012;219:16-21. http://dx.doi.org/10.1016/j.jpowsour.2012.06.077.
48 Deng Z, Ferreira J, Tanaka Y, Ye J. Physicochemical mechanism for the continuous reaction of γ‐Al2O3‐modified aluminum powder with water. Journal of the American Ceramic Society. 2007;90(5):1521-1526. http://dx.doi.org/10.1111/j.1551-2916.2007.01546.x.
49 Toda H, Hidaka T, Kobayashi M, Uesugi K, Takeuchi A, Horikawa K. Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure. Acta Materialia. 2009;57(7):2277-2290. http://dx.doi.org/10.1016/j.actamat.2009.01.026.
50 Zhang P, Li Z, Liu B, Ding W. Effect of chemical compositions on tensile behaviors of high pressure die-casting alloys Al-10Si-yCu-xMn-zFe. Materials Science and Engineering A. 2016;661:198-210. http://dx.doi.org/10.1016/j.msea.2016.03.032.
51 Shen L, Chen H, Che X, Xu L. Hydrogen embrittlement of the 7B05‐T5 aluminum alloy for high‐speed trains. Materials and Corrosion. 2020;71(1):70-76. https://doi.org/10.1002/maco.201910975.
52 Anson J, Gruzleski JT. The quantitative discrimination between shrinkage and gas microporosity in cast aluminum alloys using spatial data analysis. Materials Characterization. 1999;43(5):319-335. http://dx.doi.org/10.1016/S1044-5803(99)00059-5.
53 Sigworth G, Engh T. Chemical and kinetic factors related to hydrogen removal from aluminum. Metallurgical Transactions B. 1982;3:447-460. https://doi.org/10.1007/BF02667761.
54 Kumar S, Namboodhiri T. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020. Bulletin of Materials Science. 2011;34(2):311-321. http://dx.doi.org/10.1007/s12034-011-0066-8.
Submitted date:
08/18/2020
Accepted date:
01/07/2021