Compósitos de policloreto de vinila e cortiça: avaliação das propriedades térmicas, inflamabilidade e morfologia
Polyvinyl chloride and cork composites: evaluation of thermal, flammability and morphology
Pedro José Gomes Rodrigues, Lucas Rafael Carneiro da Silva, Arquimedes Lopes Nunes Filho, Renata Barbosa, Joyce Batista Azevedo, Tatianny Soares Alves
Resumo
Os compósitos de cloreto de polivinil (PVC) e cargas vegetais têm sido amplamente utilizados em diferentes áreas em função da baixa densidade, melhores propriedades mecânicas e estabilidade dimensional. O presente trabalho teve como objetivo desenvolver compósitos de PVC/Cortiça com diferentes aspectos granulométricos e percentuais de 5 e 10%. Os compósitos foram processados em uma extrusora monorosca, moldados por compressão em uma prensa hidráulica e avaliados quanto ao comportamento térmico por termogravimetria e teste de inflamabilidade vertical, e morfologia via microscopia óptica e eletrônica de varredura. Os resultados indicaram que, independentemente do conteúdo e tamanho dos grãos da cortiça, a estabilidade térmica dos compósitos não foi significativamente alterada. Quanto à inflamabilidade, todos os compósitos foram classificados como V-0, com tempo de extinção de chama menor que a matriz pura, com destaque para a composição com 10% de cortiça. Morfologicamente os compósitos apresentaram formação de aglomerados, poros e baixa adesão.
Palavras-chave
Abstract
Composites of polyvinyl chloride (PVC) and vegetable fillers have been widely used in different areas due to their low density, better mechanical properties and dimensional stability. The present work had the objective of developing composites of PVC/Cork with load proportions, of different granulometric aspects, of 5 and 10%. The composites were processed into a single screw extruder, then compression molded in a hydraulic press and evaluated for thermal behavior by thermogravimetry, vertical flammability test, and morphological characterization by optical microscopy and scanning electron. The results indicated that, regardless of the content and grain size of the cork, the thermal stability of the composites was not significantly altered. As for flammability, all composites were classified as V-0, with a flame extinction time lower than the pure matrix, especially in the presence of 10% of cork. Morphologically the composites showed formation of agglomerates, pores and low adhesion.
Keywords
References
1 Catto AL, Dahlem MA Jr, Hansen B, Francisquetti EL, Borsoi C. Characterization of polypropylene composites using yerba mate fibers as reinforcing filler. Composites. Part B, Engineering. 2019;174:106935.
2 Silva JS, Catry F. Forest fires in cork oak (Quercus suber L.) stands in Portugal. The International Journal of Environmental Studies. 2006;63(3):235-257.
3 Andrzejewski J, Szostak M, Barczewski M, Łuczak P. Cork-wood hybrid filler system for polypropylene and poly(lactic acid) based injection molded composites: structure evaluation and mechanical performance. Composites. Part B, Engineering. 2019;163:655-668.
4 Eires R, Jalali S, Camões A. Novos compósitos eco-eficientes para aplicações não estruturais na construção. Revista Internacional Construlink. 2010;8:45-55.
5 Gil L. A cortiça como material de construção: manual técnico. Santa Maria de Lamas: Associação Portuguesa de Cortiça; 2007 [acesso em 6 jun. 2020]. Disponível em: https://www.apcor.pt/portfolio-posts/a-cortica-comomaterial-de-construcao-manual-tecnico
6 Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD. Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Composites. Part B, Engineering. 2019;174:106956.
7 Pulngern T, Chitsamran T, Chucheepsakul S, Rosarpitak V, Patcharaphun S, Sombatsompop N. Effect of temperature on mechanical properties and creep responses for wood/PVC composites. Construction & Building Materials. 2016;111:191-198.
8 Souza MA, Pessan LA, Rodolfo A Jr. Nanocompósitos de poli (cloreto de vinila)(PVC)/argilas organofílicas. Polímeros. 2006;16(4):257-262.
9 Rodolfo A Jr, Mei LHI. Mecanismos de degradação e estabilização térmica do PVC: a review. Polímeros. 2007;17(3):263-275.
10 Carvalhais JCM. Estudo do comportamento de absorção de resinas de PVC com diferentes plastificantes [dissertação]. Coimbra: Universidade de Coimbra; 2013.
11 Dan-Asabe B. Thermo-mechanical characterization of banana particulate reinforced PVC composite as piping material. Journal of King Saud University-Engineering Sciences. 2018;30(4):296-304.
12 Doolittle AK. The technology of solvents and plasticizers. 1st ed. New York: Wiley; 1954.
13 Yang CG, Zeng HM, Li JJ. Fibre reinforced plastics. Compos. 1995;6:22.
14 Abdallah FB, Cheikh RB, Baklouti M, Denchev Z, Cunha AM. Characterization of composite materials based on PP-cork blends. Journal of Reinforced Plastics and Composites. 2006;25(14):1499-1506.
15 Sargianis J, Kim H-i, Suhr J. Natural cork agglomerate employed as an environmentally friendly solution for quiet sandwich composites. Scientific Reports. 2012;2(1):403.
16 Santos RG, Carvalho R, Silva ER, Bordado JC, Cardoso AC, Rosário Costa M, et al. Natural polymeric water-based adhesive from cork liquefaction. Industrial Crops and Products. 2016;84:314-319.
17 Walsh J, Kim H-I, Suhr J. Low velocity impact resistance and energy absorption of environmentally friendly expanded cork core-carbon fiber sandwich composites. Composites. Part A, Applied Science and Manufacturing. 2017;101:290-296.
18 Burley J, Evans J, Youngquist JA. Encyclopedia of forest sciences. 1st ed. Oxford: Academic Press; 2004.
19 Fernandes EM, Correlo VM, Mano JF, Reis RL. Polypropylene-based cork-polymer composites: processing parameters and properties. Composites. Part B, Engineering. 2014;66:210-223.
20 Vasconcelos GCMS, Carvalho LH, Barbosa R, Alves TS. Evaluation of the morphology, mechanical and thermal properties of cork and green polyethylene ecocomposites. Materials Research Express. 2019;6(9):095331.
21 Underwriters Laboratories. UL-94: test for flammability of plastic materials for parts in devices and appliances. Illinois: Underwriters Laboratories Inc.; 2001.
22 Manrich S. Processamento de termoplásticos: rosca única, extrusão e matrizes, injeção e moldes. 1. ed. São Paulo: Artliber; 2005.
23 Madaleno E, Rosa DS, Zawadzki SF, Pedrozo TH, Ramos LP. Estudo do uso de plastificantes de fontes renovável em composições de PVC. Polímeros. 2009;19(4):263-270.
24 Moreira AC, Rios PDA, Vieira HC, Mori FA. Análise química da cortiça das árvores de Kielmeyera coriacea Mart. Revista Ciência da Madeira. 2017;8:1-9.
25 Fernandes EM, Correlo VM, Mano JF, Reis RL. Novel cork-polymer composites reinforced with short natural coconut fibres: effect of fibre loading and coupling agent addition. Composites Science and Technology. 2013;78:56-62.
26 Jordan KJ, Suib SL, Koberstein JT. Determination of the degradation mechanism from the kinetic parameters of dehydrochlorinated poly (vinyl chloride) decomposition. The Journal of Physical Chemistry B. 2001;105(16):3174-3181.
27 Pita VJRR, Monteiro EEC. Estudos térmicos de misturas PVC/plastificantes: caracterização por DSC e TG. Polímeros. 1996;6:50-56.
28 Del Carpio DCF. Degradação físico-quimica do PVC causada por derivados de petróleo [dissertação]. Rio de Janeiro: Pontifícia Universidade Católica do Rio de Janeiro; 2009.
29 Jakubowicz I. Evaluation of degradability of biodegradable polyethylene (PE). Polymer Degradation & Stability. 2003;80(1):39-43.
30 Bai X-Y, Wang Q-W, Sui S-J, Zhang C-S. The effects of wood-flour on combustion and thermal degradation behaviors of PVC in wood-flour/poly (vinyl chloride) composites. Journal of Analytical and Applied Pyrolysis. 2011;91(1):34-39.
31 Fang Y, Wang Q, Guo C, Song Y, Cooper PA. Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinyl chloride (PVC) composites. Journal of Analytical and Applied Pyrolysis. 2013;100:230-236.
32 Fernandes EM, Aroso IM, Mano JF, Covas JA, Reis RL. Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites. Part B, Engineering. 2014;67:371-380.
33 Averous L, Boquillon N. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers. 2004;56(2):111-122.
34 Becker D, Kleinschmidt AC, Balzer PS. Banana fibers and rigid PVC composites: effect of fiber treatment. Matéria. 2014;19(3):257-265.
35 Weil ED, Levchik S, Moy P. Flame and smoke retardants in vinyl chloride polymers-commercial usage and current developments. Journal of Fire Sciences. 2006;24(3):211-236.
36 Rodolfo A Jr, Nunes LR, Ormanji W. Tecnologia do PVC. 1. ed. São Paulo: Proeditores/Braskem; 2006.
37 Costes L, Laoutid F, Brohez S, Dubois P. Bio-based flame retardants: When nature meets fire protection. Materials Science and Engineering R Reports. 2017;117:1-25.
38 Lu R. Cork in the sector of construction. Lisboa: Instituto Superior Técnico; 2014 [acesso em 6 jun. 2020]. Disponível em: https://fenix.tecnico.ulisboa.pt/downloadFile/844820067123530/extended%20abstract%20final.pdf
39 Fernandes EM, Correlo VM, Chagas JAM, Mano JF, Reis RL. Properties of new cork-polymer composites: advantages and drawbacks as compared with commercially available fibreboard materials. Composite Structures. 2011;93:3120-3129.
40 Pausas JG. Resprouting of Quercus suber in NE Spain after fire. Journal of Vegetation Science. 1997;8(5):703-706.
Submitted date:
04/09/2020
Accepted date:
11/05/2020