Tecnologia em Metalurgia, Materiais e Mineração
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original - Edição Especial “Tributo ao Prof. T. R. Strohaecker”

Stress corrosion cracking of carbon steels on CO2 /H2 O systems

Mariana dos Reis Tagliari, Pedro Craidy, Derek Fonseca, Marcelo Favaro Borges

Downloads: 0
Views: 49


This review article briefly compiles data available in the literature on cases of stress corrosion cracking on carbon steels in the presence of environments containing CO2 from a corrosion point of view, seeking to clarify which main factors influence the crack nucleation and propagation. The aspects related to the stress intensity factor and fracture mechanics approach will not be discussed, as well as residual stresses, which are known to be determinant factors in the study of stress corrosion cracking and therefore deserve individual reviews. It will discuss stress corrosion cracking in high strength carbon steels with a brief description of this system´s corrosion mechanisms under study and the main variables involved. Methods for assessing the susceptibility of materials to SCC will also be addressed in the form of results obtained by other authors. Also, it seeks to warn about the care in dealing with the subject, given the variation of parameters in the environment that are influential in the outbreak and spread of the phenomenon. Finally, tests will be commented on to verify the susceptibility to the phenomenon and a brief description of the known cracking mechanisms.


Stress corrosion cracking; CO2 /H2 O; High strength carbon steels.


1 Traversa E, Calderón T. Electrochemical investigation on carbon steel behaviour in CO-CO2-H2O environment for the interpretation of the SCC mechanism. Werkstoffe und Korrosion. 1991;42(1):35-40. http://dx.doi.org/10.1002/maco.19910420106.

2 Hudgins C, McGlasson R, Mehdizadeh P, Rosborough WM. Hydrogen sulfide cracking of carbon and alloy steels. Corrosion. 1966;1966(8):238-251. http://dx.doi.org/10.5006/0010-9312-22.8.238.

3 Barker R, Burkle D, Charpentier T, Thompson H, Neville A. A review of iron carbonate (FeCO3) formation in the oil and gas industry. Corrosion Science. 2018;142:312-341. http://dx.doi.org/10.1016/j.corsci.2018.07.021.

4 Motte R, Basilico E, Mingant R, Kittel J, Ropital F, Combrade P, et al. A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel. Corrosion Science. 2020;172:108666. http://dx.doi.org/10.1016/j.corsci.2020.108666.

5 Gao K, Yu F, Pang X, Zhang G, Qiao L, Chu W, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates. Corrosion Science. 2008;50(10):2796-2803. http://dx.doi.org/10.1016/j.corsci.2008.07.016.

6 Dai H, Shi S, Guo C, Chen X. Pits formation and stress corrosion cracking behavior of Q345R in hydrofluoric acid. Corrosion Science. 2020;166:108443. http://dx.doi.org/10.1016/j.corsci.2020.108443.

7 Mai W, Soghrati S. A phase field model for simulating the stress corrosion cracking initiated from corrosion pit. Corrosion Science. 2017;125:87-98. http://dx.doi.org/10.1016/j.corsci.2017.06.006.

8 Wang W, Zhou A, Fu G, Li C, Robert D, Mahmoodian M. Evaluation of stress intensity factor for cast iron pipes with sharp corrosion pits. Engineering Failure Analysis. 2017;81:254-269. http://dx.doi.org/10.1016/j.engfailanal.2017.06.026.

9 Rogowska M, Gudme J, Rubin A, Pantleon K, Ambat R. Effect of Fe ion concentration on corrosion of carbon steel in CO2 environment. Corrosion Engineering, Science and Technology. 2016

10 Rosli N. The effect of oxygen in sweet corrosion of carbon steel for enhanced oil recovery [dissertation]. Athens, OH: Russ College of Engineering and Technology; 2015.

11 Parkins RN, Zhou S. The stress corrosion cracking of C-Mn steel in CO2-HCO3-, CO32- solutions. I: stress corrosion data. Corrosion Science. 1997;39(1):159-173. http://dx.doi.org/10.1016/S0010-938X(96)00116-3.

12 Rhodes P. Stress cracking in corrosive oil and gas wells. Houston, Texas: NACE Corrosion; 1986.

13 Kunze, E., Gerken, G., Nowak, J. Ergebnisse des Forschungs und Entwicklungsprogramms “Korrosion und Korrosionsschutz”. Werkstoff und Korrosion. 1979;30:809-811.

14 Spähn, H., Wagner, G., Steinhoff. Betriebliche und sicherheitstechnische Aspekte der Spannungsrisskorrosion. Technische Überwachung; 1973. p. 260-264.

15 Wendler-Kalsch, E., Gräfen, H. Korrosionsschadenkunde. USA: Springer-Verlag; 2012.

16 Sadeghi Meresht E, Shahrabi Farahani T, Neshati J. Failure analysis of stress corrosion cracking occurred in a gastransmission steel pipeline. Engineering Failure Analysis. 2011;18(3):963-970. http://dx.doi.org/10.1016/j.engfailanal.2010.11.014.

17 Manfredi C, Otegui JL. Failures by SCC in buried pipelines. Engineering Failure Analysis. 2002;9(5):495-509. http://dx.doi.org/10.1016/S1350-6307(01)00032-2.

18 Wang J, Atrens A. Analysis of service stress corrosion cracking in a natural gastransmission pipeline, active or dormant? Engineering Failure Analysis. 2004;11(1):3-18. http://dx.doi.org/10.1016/j.engfailanal.2003.08.001.

19 Hasan F, Iqbal J, Ahmed F. Stress corrosion failure of high-pressure gas pipeline. Engineering Failure Analysis. 2007;14(5):801-809. http://dx.doi.org/10.1016/j.engfailanal.2006.11.002.

20 Abedi S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline. Engineering Failure Analysis. 2007;14(1):250-261. http://dx.doi.org/10.1016/j.engfailanal.2005.07.024.

21 Schlerkmann, H. Zur Frage der rissbildenden Korrosion von niedriglegierten Vergütungsstählen im System CO2/H2O. [thesis]. Aachen: RWTH Aachen University, 1982.

22 Schmitt G, Hörstemeier M. Fundamental aspects of CO2 metal loss corrosion – Part II: influence of different parameters on CO2 corrosion mechanisms. Corrosion. 2006. Paper presented at the CORROSION 2006, San Diego, California, March 2006.

23 Nešić S, Nordsveen M, Nyborg R, Stangeland A. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 2: a numerical experiment. Corrosion Science. 2003;59(6):489-497.

24 Van der Merwe J. The stress-corrosion cracking of carbon steel in CO-CO2 -H2 O [thesis]. Pretoria: University of Pretoria; 2013.

25 Rosli N, Choi Y, Young D. Impact of oxygen ingress in CO2 corrosion of mild steel. Corrosion. 2014. Paper presented at the CORROSION 2014, San Antonio, Texas, USA, March 2014.

26 Dugstad A, Morland B, Clausen S. Corrosion of transport pipelines for CO2 – effect of water ingress. Energy Procedia. 2011;4:3063-3070. http://dx.doi.org/10.1016/j.egypro.2011.02.218.

27 Mack R. Stress corrosion cracking of high strength steels in aqueous solutions containing CO2 - Effects of Yield Strength, Dissolved Oxygen, and Temperature. Corrosion. 2001. Paper presented at the CORROSION 2001, Houston, Texas, March 2001.

28 Brown A, Harrison J, Wilkins R. Electrochemical investigation of stress corrosion cracking of plain carbon steel in the CO-CO2-H2O system. In: National Association of Corrosion Engineers – NACE. International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys; 1973; Unieux-Firminy, França. Houston, Texas: NACE; 1973.

29 Kowaka M, Nagata S. Stress Corrosion Cracking of mild and low steels in CO2-CO-H2O environments. Corrosion. 1976. http://dx.doi.org/10.5006/0010-9312-32.10.395.

30 Tang J, Shao Y, Guo J, Zhang T, Meng G, Wang F. The effect of H2S concentration on the corrosion behavior of carbon steel at 90 C. Corrosion Science. 2010;52(6):2050-2058. http://dx.doi.org/10.1016/j.corsci.2010.02.004.

31 Gräfen, H., Schlecker, H. Rissschäden an unlegierten Stählen in CO-CO2-H2O-Gemischen durch anodische oder wasserstoffinduzierte Spannungsrisskorrosion ausgelöst? Aufklärung des Mechanismus und Festlegung von Schutzmassnahmen. Werkstoffe und Korrosion. 1984;35:273-310.

32 Krieck-Defrain, M. Zum- Einfluß von Medien- und Werkstoffparametern auf die Metallauflösung, Wasserstoffaufnahme und Deckschichteigenschaften bei der Stahlkorrosion unter erhöhten CO2-Drücken. [thesis]. Aachen: RWTH Aachen University, 1989.

33 Vancostenoble A, Duret-Thual C, Bosch C, Delafosse D. Stress corrosion cracking of ferrito-pearlitic steel in aqueous environment containing dissolved CO2. Corrosion. 2014. Paper presented at the CORROSION 2014, San Antonio, Texas, USA, March 2014.

34 Wang S, Lamborn L, Chevil K, Gamboa E, Chen W. On the formation of stress corrosion crack colonies with different crack population. Corrosion Science. 2020;168:108592.

35 Javidi M, Horeh S. Bahalaou. Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel. Corrosion Science. 2014;80:213-220. http://dx.doi.org/10.1016/j.corsci.2013.11.031.

36 Lu BT, Song F, Gao M, Elboujdaini M. Crack growth model for pipelines exposed to concentrated carbonatebicarbonate solution with high pH. Corrosion Science. 2010;52(12):4064-4072. http://dx.doi.org/10.1016/j. corsci.2010.08.023.

37 Fan L, Du C, Liu Z, Li X. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate. International Journal of Minerals Metallurgy and Materials. 2013;20(7):645-652. http://dx.doi.org/10.1007/s12613-013-0778-4.

38 Burstein DH, Burstein GT. The effects of bicarbonate on the corrosion and passivation of iron. Corrosion. 1980

39 Meng GZ, Zhang C, Cheng YF. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution. Corrosion Science. 2008;50(11):3116-3122. http://dx.doi.org/10.1016/j.corsci.2008.08.026.

40 Chen W, Kania R, Worthingham R, Boven GV. Transgranular crack growth in the pipeline steels exposed to nearneutral pH soil aqueous solutions: the role of hydrogen. Acta Materialia. 2009;57(20):6200-6214. http://dx.doi. org/10.1016/j.actamat.2009.08.047.

41 Schmitt, G, Sobbe,L.,Bruckoff, W. Corrosion and hydrogen-induced cracking of pipeline steel in moist triethylene glycol diluted with liquid hydrogen sulfide. Corrosion Science, 1987; 27(1071-1076).

42 American National Standards Institute. NACE-MR0175. Petroleum And Natural Gas Industries - Materials For Use In H2S-Containing Environments In Oil And Gas Production (includes parts 1, 2, and 3). Washington: ANSI; 2015.

43 Remita E. Étude de la corrosion d’un Acier faiblement allié en Mileu confiné contenant du CO2 dissous [thesis]. Paris: Université Pierre et Marie Curie; 2007.

44 Van Hunnik E, Pots BFM, Hendriksen ELJA. The formation of protective FeCO3 corrosion product layers in CO2 corrosion. Corrosion. 1996

45 Al-Hassan S, Mishra B, Olson DL, Salama MM. Effect of microstructure on corrosion of steels in aqueous solutions containing carbon dioxide. Corrosion. 1998;54(6):480-491. http://dx.doi.org/10.5006/1.3284876.

46 Lopez DA, Schreiner WH, de Sánchez SR, Simison SN. The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization. Applied Surface Science. 2003;207(1-4):69-85. http://dx.doi.org/10.1016/S0169-4332(02)01218-7.

47 Báez V, Vera J. Electrochemical noise for evaluating pitting resistance of cra materials under simulated well conditions. Corrosion. 2001

48 Kowaka M, Nagata S. Stress corrosion cracking of mild and low alloy steels in CO-CO2-H2O environments. Corrosion. 1976;32(10):395-401. http://dx.doi.org/10.5006/0010-9312-32.10.395.

49 Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: PItting and cracking occurrence. Acta Materialia. 2007;55(1):29-42.

50 Raja VS. Stress corrosion cracking: theory and practice. Sawston, Cambridge: Woodhead Publishing; 2011.

51 Beavers JA, Johnson JT, Sutherby RL. Materials factors influencing the initiation of near-neutral pH soil environments. In: Proceedings of the 3rd International Pipeline Conference Calgary; 2000; Alberta, Canada. USA: ASME; 2000.

52 Wu S, Chen H, Ramandi H, Hagan PC, Crosky A, Saydam S. Effects of environmental factors on stress corrosion cracking of cold-drawn high-carbon steel wires. Corrosion Science. 2018;132:234-243. http://dx.doi.org/10.1016/j.corsci.2017.12.014.

53 Chen W, Vanboven G, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels – Part II: crack dormancy. Acta Materialia. 2007;55(1):43-53. http://dx.doi.org/10.1016/j.actamat.2006.07.021.

54 Beavers JA, Johnson JT, Sutherby RL. Materials factors influencing the initiation of near-neutral pH SCC on underground pipelines. In: Proceedings of 3rd International Pipeline Conference; 2000 Oct 1-5; Calgary, Canada. Calgary, Canada: International Petroleum Technology Institute; 2000. p. 979.

55 Liu R, Cui L, Liu L, Zhang B, Wang F. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution. Corrosion Science. 2020;165:108402.

56 Yang ZX, Kan B, Li JX, Su YJ, Qiao LJ. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment. International Journal of Hydrogen Energy. 2017;42(44):27446-27457. http://dx.doi.org/10.1016/j.ijhydene.2017.09.061.

57 Schmitt G. Fundamental aspects of CO2 corrosion. Advances in CO2 corrosion. San Diego: NACE International; 1984.

58 Nguyen T, Bolivar J, Shi Y, Réthoré J, King A, Fregonese M, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation. Corrosion Science. 2018;132:146-160. http://dx.doi.org/10.1016/j.corsci.2017.12.027.

59 Burleigh T. The postulated mechanisms for stress corrosion cracking of aluminum alloys: a review of the literature 1980–1989. Corrosion. 1991;47(2):89-98. http://dx.doi.org/10.5006/1.3585235.

60 Lynch SP. Mechanistic and fractographic aspects of stress-corrosion cracking (SCC). In: Raja VS, Shoji T, editors. Stress corrosion cracking: theory and practice. Sawston, Cambridge: Woodhead Publishing; 2011.

61 Lynch SP. Hydrogen embrittlement (HE) phenomena and mechanisms. In: Raja VS, Shoji T, editors. Stress corrosion cracking: theory and practice. Sawston, Cambridge: Woodhead Publishing; 2011. http://dx.doi.org/10.1533/9780857093769.1.90.

62 Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, et al. Hydrogen embrittlement understood. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2015;46(6):2323-2341. http://dx.doi.org/10.1007/s11661-015-2836-1.

63 Kamoutsi H, Haidemenopoulos GN, Bontozoglou V, Pantelakis S. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024. Corrosion Science. 2006;48(5):1209-1224. http://dx.doi.org/10.1016/j.corsci.2005.05.015.

64 Parkins RN. Environmentally assisted cracking test methods. In: Cottis B, Graham M, Lindsay R, Lyon S, Richardson T, Scantlebury D, Stott H. Shreir’s corrosion. USA: Elsevier; 2010. http://dx.doi.org/10.1016/B978-044452787-5.00181-5.

65 Dietzel W, Bala Srinivasan P, Atrens A. Testing and evaluation methods for stress corrosion cracking (SCC) in metals. In Raja VS, Shoji. T. Stress corrosion cracking: theory and practice. Sawston, Cambridge: Woodhead Publishing. Woodhead Publishing Series in Metals and Surface Engineering.

66 ASTM International. ASTM-G49. Standard Practice for Preparation and Use of Direct Tension Stress-Corrosion Test Specimens. West Conshohocken, PA: ASTM International; 2019.

67 ASTM International. ASTM-G39. Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens. West Conshohocken, PA: ASTM International; 2016.

68 American National Standards Institute. NACE-TM-0177. Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments. Washington: ANSI; 2016.

69 International Organization for Standardization. ISO-7539-2. Corrosion of metals and alloys — Stress corrosion testing — Part 2: Preparation and use of bent-beam specimens. Genebra: ISO; 1989.

70 Scully JR, Moran P. Influence of strain on hydrogen assisted cracking of cathodically polarized high-strength steel. In Lisagor W, Crooker T, Leis B. Environmentally assisted cracking: science and engineering - ASTM STP 1049. West Conshohocken, PA: ASTM International; 1990. http://dx.doi.org/10.1520/STP24058S.

71 ASTM International. ASTM-G129. Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. West Conshohocken, PA: ASTM International; 2013.

72 ASTM International. ASTM-F1624. Standard Test Method For Measurement Of Hydrogen Embrittlement Threshold In Steel By The Incremental Step Loading Technique. West Conshohocken, PA: ASTM International; 2018.

73 Dietzel W, Turnbull A. Stress corrosion cracking. In: Milne I, Ritchie RO, Karihaloo B, editors. Comprehensive structural integrity. USA: Elsevier; 2007.

74 Hudgins C, McGlasson R, Mehdizadeh P, Rosborough W. Hydrogen sulfide cracking of carbon and alloy steels. 1966;22(8):231-251.

Submetido em:

Aceito em:

60870939a95395591d67ba45 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections