Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212440
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Efeitos de tratamentos térmicos de têmpera com austenitização intercrítica na microestrutura, partição de elementos e temperatura Ms em um aço TRIP780

Effects of quenching heat treatments with intercritical austenitizing in the microstructure, elements partition and Ms temperature in a TRIP780 steel

Natália Aparecida Barbosa Pimenta, Charles Henrique Xavier Morais Magalhães, Pablo Henrique Kelly Campos, Geraldo Lúcio de Faria

Downloads: 0
Views: 60

Resumo

Neste trabalho, o efeito de tratamentos térmicos de têmpera com austenitização intercrítica sobre a microestrutura, partição de elementos e temperatura Ms foi estudado para um aço TRIP780. Por meio de dados dilatométricos e caracterização microestrutural, diferentes ciclos térmicos de têmpera com austenitização intercrítica foram avaliados. Os resultados obtidos experimentalmente foram comparados com aqueles obtidos por meio de simulações computacionais no equilíbrio. Concluiu-se que, quanto menor a temperatura de austenitização intercrítica, menor é a fração de austenita formada tanto no equilíbrio quanto fora dele. Verificou-se ainda que, quanto menor a fração de austenita formada, maior é a concentração de C e Mn na referida fase, assim como menor é a concentração de Si. Esse cenário favorece a formação de bainita durante a têmpera e diminui significativamente a temperatura Ms . Os resultados obtidos apontam que o conhecimento dos efeitos da austenitização intercrítica em um aço C-Mn-Si tem grande potencial para ser aplicado com o objetivo de se definir ciclos térmicos que favoreçam a estabilidade da austenita e permitam o ajuste fino da temperatura Ms , possibilitando que tratamentos térmicos atuais, como têmpera e partição, possam ser empregados com significativas chances de sucesso. 

Palavras-chave

Austenitização intercrítica; Aço TRIP780; Partição; Temperatura Ms .

Abstract

In this work, the effect of quenching heat treatments with intercritical austenitizing on the microstructure, element partition and Ms temperature was studied for a TRIP780 steel. Using dilatometric data and microstructural characterization, different quenching cycles with intercritical austenitizing were evaluated. The results experimentally obtained were compared with those obtained by in-equilibrium computational simulations. It was concluded that the lower the intercritical temperature, the lower the austenite fraction in both conditions: in- and non-equilibrium. It was also found that the lower the austenite fraction, the higher its C and Mn contents, as well as the lower its Si concentration. This scenario favors the formation of bainite during quenching and significantly decreases the Ms temperature. These results show that the knowledge about the effects of intercritical austenitizing on a C-Mn-Si steel has great potential to be applied in order to define thermal cycles that favor the austenite stability and allow the fine adjustment of the Ms temperature, making it possible that important and actual heat treatments, such as quenching and partitioning, can be used with great chance of success.

Keywords

Intercritical austenitizing; TRIP780 steel; Partitioning; Ms temperature.

Referências

1 Keeler S, Kimchi M, Mooney PJ. Advanced high-strength steels apllication guidelines version 6.0. Middletown, OH: World Auto Steel; 2017.
2 Kang T, Zhao Z, Liang J, Guo J, Zhao Y. Effect of the austenitizing temperature on the microstructure evolution and mechanical properties of Q&P steel. Materials Science and Engineering A. 2020;771:138584. 
3 Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels. Journal of Iron and Steel Research International. 2010;17(5):44-50.
4 Behera AK, Olson GB. Nonequilibrium thermodynamic modeling of carbon partitioning in quench and partition (Q&P) steel. Scripta Materialia. 2018;147:6-10.
5 Ding R, Tang D, Zhao A, Dong R, Cheng J, Meng X. Effect of intercritical temperature on quenching and partitioning steels originated from martensitic pre-microstructure. Journal of Materials Research. 2014;29(21):2525-2533.
6 Nyyssönen T, Peura P, Moor ED, Williamson D, Kuokkala V-T. Crystallography and mechanical properties of intercritically annealed quench and partitioned high-aluminum steel. Materials Characterization. 2019;148:71-80.
7 Kong H, Chao Q, Cai MH, Pavlina EJ, Rolfe B, Hodgson PD, et al. Microstructure evolution and mechanical behavior of a CMnSiAl TRIP steel subjected to partial austenitization along with quenching and partitioning treatment. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2018;49(5):1509-1519. 
8 Lee SJ, Lee S, De Cooman BC. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scripta Materialia. 2011;64(7):649-652.
9 Han Q, Kang Y, Zhao X, Stanford N, Cai M. Suppression of Ms temperature by carbon partitioning from carbonsupersaturated ferrite to metastable austenite during intercritical annealing. Materials & Design. 2013;51:409-414.
10 Toji Y, Matsuda H, Herbig M, Choi PP, Raabe D. Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Materialia. 2014;65:215-228.
11 Magalhães CHXM, Mourão GMM, Campos PHK, Faria GL. Caracterização das transformaçoes de fases sob resfriamento contínuo de um aço do tipo TRIP780. In: Anais do 74º Congresso Anual da ABM; 2019 Out 1-3; São Paulo. São Paulo: Blucher; 2019. p. 203-214.
12 Cezário ALS. Caracterização e avaliação de modelos de previsibilidade da cinética de transformação de fases austenita/ferrita de três aços IF [dissertação]. Ouro Preto: Universidade Federal de Ouro Preto; 2018.
13 American Society for Testing and Materials. ASTM E3-01: standard practice for preparation of metallographic specimens. West Conshohocken: ASTM Internacional; 2001.
14 American Society for Testing and Materials. ASTM E1245-03: standard practice for determining the inclusion or second-phase constituent content of metals by automatic image analysis. West Conshohocken: ASTM Internacional; 2016.
15 Lee S, De Cooman BC. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2013;44(11):5018-5024.
16 Matsuzaki A, Bhadeshia HKDH. Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels. Materials Science and Technology. 1999;15(5):518-522.
17 Ghaheri A, Shafyei A, Honarmand M. Effects of inter-critical temperatures on martensite morphology, volume fraction and mechanical properties of dual-phase steels obtained from direct and continuous annealing cycles. Materials & Design. 2014;62:305-319.
18 Zhu X, Zhang K, Li W, Jin X. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels. Materials Science and Engineering A. 2016;658:400-408.
19 Mujahid SA, Bhadeshia HKDH. Partitioning of carbon from supersaturated ferrite plates. Acta Metallurgica et Materialia. 1992;40(2):389-396.
20 Zarei-Hanzaki A, Yue S. Ferrite formation characteristics in Si-Mn TRIP steels. ISIJ International. 1997;37(6):583- 589.
21 Liu C, Zhao Z, Northwood DO, Liu Y. A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels. Journal of Materials Processing Technology. 2001;113(1-3):556-562.
22 Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica. 1959;7(1):59-60.


Submetido em:
01/09/2020

Aceito em:
18/01/2021

61940e77a9539556e56edd53 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections