Comparison of surface properties modification by direct and active screen plasma nitriding of an ASTM M2 high-speed steel in a nitrogen rich gas mixture
Comparação da modificação superficial por nitretação direta e por tela ativa de um aço ASTM M2 em mistura rica em nitrogênio
Leonardo Fonseca Oliveira, Alexandre da Silva Rocha, Giovanni Rocha dos Santos
Abstract
The active screen plasma nitriding technique has been studied in recent years as a method to optimize surface properties in steel components, avoiding the negative effects caused in the conventional Direct Current plasma treatments. In this study, ASTM M2 high-speed tool steel samples were plasma nitrided with and without the use of the active screen, in order to compare the surface properties developed by each technique. The treatments were carried out at 500 °C, with the gas mixture of 76 vol.% N2 + 24 vol.% H2 , for 4 and 8 h. The active screen used was built with an expanded sheet of 304 stainless steel. The results were evaluated through optical microscopy, X-ray diffraction, and microhardness measurements. The samples were subjected to dry ball-on-flat tribological tests and the wear tracks were verified by 3D optical interferometry. The active screen use provided the formation of thinner layers, however, avoided the formation of brittle phases, resulting in the lowest wear volumes observed, up to 10 times less than the other analyzed conditions (nitrided and non-nitrided samples).
Keywords
Resumo
A técnica de nitretação com tela ativa vem sendo estudada nos últimos anos como uma maneira de otimizar propriedades superficiais de componentes de aço, evitando os efeitos negativos provocados nos tratamentos a plasma convencionais de corrente contínua. Neste estudo, amostras do aço rápido ASTM M2 foram submetidas a tratamentos de nitretação a plasma com e sem a utilização da tela ativa, a fim de comparar as propriedades superficiais proporcionadas por cada técnica. Os tratamentos foram executados em 500 °C, com a mistura gasosa de 76% N2 + 24% H2 , durante 4 e 8 horas. A tela ativa utilizada foi construída utilizando chapa expandida de aço inoxidável AISI 304. Os resultados foram avaliados através de microscopia ótica, difração de raios-X e medidas de microdureza. As amostras foram submetidas a ensaios tribológicos do tipo esfera-sobre-plano a seco e as trilhas de desgaste foram verificadas por interferometria ótica 3D. A utilização da tela ativa proporcionou a formação de camadas menos profundas, porém, evitou a formação de fases frágeis, resultando nos menores volumes desgastados observados, até 10 vezes menor que as outras condições analisadas (amostras nitretadas e não-nitretada).
Palavras-chave
Referências
1 Czerwinski F. Thermochemical treatment of metals. In: Czerwinski F, editor. Heat treatment - conventional and novel applications. London: InTech; 2012. http://dx.doi.org/10.5772/51566.
2 Yetim AF, Yildiz F, Vangolu Y, Alsaran A, Celik A. Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy. Wear. 2009;267(12):2179-2185. http://dx.doi.org/10.1016/j.wear.2009.04.005.
3 Kovács D, Kemény A, Dobránszky J, Quintana I. Effects of plasma nitriding on tempered steel. IOP Conference Series: Materials Science and Engineering; 2018;426:012027. http://dx.doi.org/10.1088/1757-899X/426/1/012027.
4 Mittemeijer EJ, Somers MAJ. Thermochemical surface engineering of steels. Sawston, Cambridge: Woodhead Publishing; 2015.
5 Li CX. Active screen plasma nitriding – an overview. Surface Engineering. 2010;26(1-2):135-141. http://dx.doi.org/10.1179/174329409X439032.
6 Gallo SC. Active screen plasma surface engineering of austenitic stainless steel for enchanced tribological and corrosion properties. Birmingham: University of Birmingham; 2009.
7 Rousseau AF. Metallurgical characterization and performance of high speed steel tool materials used in metal cutting applications. Melbourne: Swinburne University of Technology; 2016.
8 Ozbaysal K, Inal OT, Romig AD Jr. Ion-nitriding behavior of several tool steels. Materials Science and Engineering. 1986;78(2):179-191. http://dx.doi.org/10.1016/0025-5416(86)90322-8.
9 Rocha A S. Influência do estado superficial prévio na nitretação a plasma do aço AISI M2 [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2000.
10 Kwietniewski C, Fontana W, Moraes C, Rocha AS, Hirsch T, Reguly A. Nitrided layer embrittlement due to edge effect on duplex treated AISI M2 high-speed steel. Surface and Coatings Technology. 2004;179(1):27-32. http://dx.doi.org/10.1016/S0257-8972(03)00795-3.
11 Akbari A, Mohammadzadeh R, Templier C, Riviere JP. Effect of the initial microstructure on the plasma nitriding behavior of AISI M2 high speed steel. Surface and Coatings Technology. 2010;204(24):4114-4120. http://dx.doi.org/10.1016/j.surfcoat.2010.05.042.
12 Tier M, Bloyce A, Bell T, Strohaecker T. Wear of plasma nitrided high speed steel. Surface Engineering. 1998;14(3):223-227. http://dx.doi.org/10.1179/sur.1998.14.3.223.
13 Mohammadzadeh R, Akbari A, Drouet M. Microstructure and wear properties of AISI M2 tool steel on RF plasma nitriding at different N2-H2 gas compositions. Surface and Coatings Technology. 2014;258:566-573. http://dx.doi.org/10.1016/j.surfcoat.2014.08.036.
14 Pessin MA, Tier MD, Strohaecker TR, Bloyce A, Sun Y, Bell T. The effects of plasma nitriding process parameters on the wear characteristics of AISI M2 tool steel. Tribology Letters. 2000;8(4):223-228. http://dx.doi.org/10.1023/A:1019199604963.
15 Hacisalihoglu I, Yildiz F, Alsaran A. Wear performance of different nitride-based coatings on plasma nitrided AISI M2 tool steel in dry and lubricated conditions. Wear. 2017;384-385:159-168. http://dx.doi.org/10.1016/j.wear.2017.01.117.
16 Naz MY, Shukrullah S, Javaid MA, Ghaffar A, Rehman NU. Surface hardening of M2 high speed steel using 50 Hz pulsed DC source with nitrogen as a base gas. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry. 2015;45(7):1057-1062.
17 Doyle ED, Pagon AM, Hubbard P, Dowey SJ, Pilkington A, McCulloch DG, et al. Nitriding of high speed steel. Int Heat Treat Surf Eng. 2011;5(2):69-72. http://dx.doi.org/10.1179/174951411X12956208225348.
18 Abreu LHP, Pimentel MCL, Borges WFA, Costa THC, Naeem M, Iqbal J, et al. Plasma nitriding of AISI M2 steel: performance evaluation in forming tools. Surface Engineering. 2020;36(5):1-8. http://dx.doi.org/10.1080/02670844. 2020.1727685.
19 ASTM International. ASTM G133-05 (2016) - Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. West Conshohocken, PA: ASTM International; 2016.
20 Zhao C, Li CX, Dong H, Bell T. Study on the active screen plasma nitriding and its nitriding mechanism. Surface and Coatings Technology. 2006;201(6):2320-2325. http://dx.doi.org/10.1016/j.surfcoat.2006.03.045.
21 da Silva Rocha A, Strohaecker T, Tomala V, Hirsch T. Microstructure and residual stresses of a plasma-nitrided M2 tool steel. Surface and Coatings Technology. 1999;115(1):24-31. http://dx.doi.org/10.1016/S0257-8972(99)00063-8.
22 Tier MA, Kieckow F, Strohaecker TR, Rocha AS. A study of carbon redistribution during plasma nitriding of steel. In: Proceedings of the 15th IFHTSE - International Federation for Heat Treatment and Surface Engineering; 2006; Vienna. Leoben: ASMET - The Austrian Society for Metallurgy and Materials; 2006. p. 193-199.
23 Berg M, Budtz-Jørgensen CV, Reitz H, Schweitz KO, Chevallier J, Kringhøj P, et al. On plasma nitriding of steels. Surface and Coatings Technology. 2000;124(1):25-31. http://dx.doi.org/10.1016/S0257-8972(99)00472-7.
24 Hill MP, Pankhurst KS. Microhardness and nitrogen concentration profiles for nitrided 316 steel. Surface Technology. 1979;8(3):253-262. http://dx.doi.org/10.1016/0376-4583(79)90018-9.
25 Sun Y, Li XY, Bell T. X-ray diffraction characterisation of low temperature plasma nitrided austenitic stainless steels. Journal of Materials Science. 1999;34(19):4793-4802. http://dx.doi.org/10.1023/A:1004647423860.
26 Alsaran A. Determination of tribological properties of ion-nitrided AISI 5140 steel. Materials Characterization. 2002;49(2):171-176. http://dx.doi.org/10.1016/S1044-5803(03)00008-1.
27 Rocha AS, Strohaecker T, Tomala V, Hirsch T. Microstructure and residual stresses of a plasma-nitrided M2 tool steel. Surface and Coatings Technology. 1999;115(1):24-31. http://dx.doi.org/10.1016/S0257-8972(99)00063-8.
28 Hirsch T, Rocha A, Ramos F, Strohaecker TR. Residual stress-affected diffusion during plasma nitriding of tool steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2004;35(11):3523-3530. http://dx.doi.org/10.1007/s11661-004-0189-2.
Submetido em:
14/08/2020
Aceito em:
10/02/2021