Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212456
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Argila bentonítica funcionalizada com potássio: caracterização e uso como catalisar para reação de transesterificação do óleo de algodão

Bentonitic clay functioned with potassium: characterization and use as a catalyst for cotton oil transesterification reaction

Jonei Marques da Costa, Luiz Rogério Pinho de Andrade Lima

Downloads: 1
Views: 687

Resumo

O uso de argilas é uma alternativa tecnicamente adequada à síntese de catalisadores de alta eficiência para transesterificação com o objetivo de produzir biodiesel etílico ou metílico, com vantagens em relação aos métodos comercialmente utilizados. O presente trabalho teve como objetivo analisar diferentes formas de funcionalizar uma bentonita com K+ para catalisar a transesterificação etílica e metílica do óleo de algodão. A bentonita e catalisadores foram caracterizados por DRX, FRX e FT-IR. O óleo e seus produtos foram analisados por cromatografia gasosa e FT-IR. A análise exploratória da fração oleosa por FT-IR produziu resultados consistentes e convergentes com o método tradicional de análise por cromatografia gasosa. A transesterificação metílica teve seu melhor desempenho (91%) usando o catalisador KC400 (Bentonita + K2 CO3 ). A transesterificação etílica teve seu melhor desempenho (35%) usando o catalisador KF700 (Bentonita + KF).

Palavras-chave

Argila; Caracterização; Materiais funcionalizados; Catalisador

Abstract

The use of clays is a technically suitable alternative to the synthesis of high-performance catalysts for transesterification in order to produce biodiesel ethyl or methyl, with advantages over the commercially used methods. This study aimed to analyze different ways to functionalize one bentonite K+ to catalyze the transesterification ethyl and methyl cotton oil. Bentonite and catalysts were characterized by XRD, XRF and FT-IR. Oil and it is reaction products were analyzed by gas chromatography and FT-IR. Exploratory analysis of the oily fraction produced by FT-IR consistent results and converging with the traditional method of analysis by gas chromatography. Methyl transesterification performed best (91%) using the KC400 catalyst (Bentonite + K2 CO3 ). Ethyl transesterification had its best performance (35%) using the catalyst KF700 (Bentonite + KF).

Keywords

Clay; Characterization; Functionalized materials; Catalyst.

Referências

1 Sharma Y, Singh B, Korstad J. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: a review. Fuel. 2011;90(4):1309-1324.

2 Hattori H. Solid base catalysts: Fundamentals and their applications in organic reactions. Applied Catalysis A, General. 2015;504:103-109.

3 Boz N, Kara M. Solid base catalyzed transesterification of canola oil. Chemical Engineering Communications. 2008;196(1-2):80-92.

4 Ballotin F, Nascimento M, Vieira S, Bertoli A, Carmignano O, Teixeira A, et al. Natural Mg silicates with different structures and morphologies: reaction with K to produce K2 MgSiO4 catalyst for biodiesel production. International Journal of Minerals Metallurgy and Materials. 2020;27(1):46-54.

5 Agustian E. Savitri, Ghozali M, Wuryaningsih. Biodiesel production of jatropha curcas oil by bentonite as catalyst. Indonesian Institute of Sciences. In: Proceedings of the International Conference on Sustainable Energy Engineering and Application; 2012 Nov 6-8; Yogyakarta, Indonesia. Indonesia: Lembaga Ilmu Pengetahuan Indonesia; 2012. p. 35-39.

6 Soetaredjo F, Ayucitra A, Ismadji S, Maukar A. KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science. 2011;53(2):341-346.

7 Boz N, Degirmenbasi N, Kalyon D. Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Applied Catalysis B: Environmental. 2013;138-139:236-242.

8 Degirmenbasi N, Boz N, Kalyon D. Biofuel production via transesterification using sepiolite-supported alkaline catalysts. Applied Catalysis B: Environmental. 2014;150–151:147-156.

9 Alves H, da Rocha A, Monteiro M, Moretti C, Cabrelon M, Schwengber C, et al. Treatment of clay with KF: new solid catalyst for biodiesel production. Applied Clay Science. 2014;91-92:98-104.

10 Silva L, Silva E, Monteiro M, Silva C, Teleken J, Alves H. Effect of the chemical composition of smectites used in KF/Clay catalysts on soybean oil transesterification into methyl esters. Applied Clay Science. 2014;102:121-127.

11 Santos K, Bariccatti R, De Rossi E, Colpini L, Eckert C, Dos Santos G, et al. Activity of heterogeneous catalysts in the methyl and ethyl transesterification of soybean oil. Journal of Food Agriculture and Environment. 2015;13(2):250-255.

12 Ribeiro M, Raiher A. Potentialities of energy generation from waste and feedstock produced by the agricultural sector in Brazil: the case of the State of Paraná. Energy Policy. 2013;60:208-216.

13 Sitepu E, Heimann K, Raston C, Zhang W. Critical evaluation of process parameters for direct biodiesel production from diverse feedstock. Renewable & Sustainable Energy Reviews. 2020;123:109762.

14 Crystallography Open Database [página da internet]. 2020 [acesso em 2 mar. 2020]. Disponível em: http://www.crystallography.net/cod/

15 Persson K. Materials Project [Internet]. 2020 [acesso em 1 fev. 2020]. Disponível em: https://materialsproject.org/

16 Araújo J, Assis J, Monine V, Bertolino L. Caracterização da microestrutura de caulinitas pela difração de raios X. Matéria. 2006;11(3):361-371.

17 Yazici D, Bilgiç C. Determining the surface acidic properties of solid catalysts by amine titration using Hammett indicators and FTIR-pyridine adsorption methods. Surface and Interface Analysis. 2010;42(6-7):959-962.

18 Bernardo J. Catalisadores heterogéneos básicos para a produção de biodiesel [dissertação]. Lisboa: Instituto Superior de Engenharia de Lisboa; 2010.

19 Zagonel G, Peralta-Zamora P, Ramos L. Multivariate monitoring of soybean oil ethanolysis by FTIR. Talanta. 2004;63(4):1021-1025.

20 Caccamo M, Mavilia G, Mavilia L, Lombardo D, Magazù S. Self-assembly processes in hydrated montmorillonite by FTIR investigations. Materials. 2020;13(5):1100.

21 Tinti A, Tugnoli V, Bonora S, Francioso O. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review. Journal of Central European Agriculture. 2015;16(1):1-22.

22 Bishop J, Pieters C, Edwards J. Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals. 1994;42(6):702-716.

23 Kawahara A, Andou Y, Marumo F, Okuno M. The crystal structure of high tempetature from of kalsilite (KAlSiO4 ) at 950 °C. Mineralogical Journal. 1987;13:260-270.

24 Povnnennykh A. The use of infrared spectra for the determination of mineral. The American Mineralogist. 1978;63(2):956-959.

25 Madejová J. FT-IR techniques in clay mineral studies. Vibrational Spectroscopy. 2003;31(1):1-10.

26 Miller F, Wilkins C. Infrared spectra and characteristic frequencies of inorganic ions. Analytical Chemistry. 1952;28(6):1253-1294.

27 Liu Z, Wang J, Kang M, Yin N, Wang X, Tan Y, et al. Synthesis of glycerol carbonate by transesterification of glycerol and dimethyl carbonate over KF/γ-Al2 O3 catalyst. Journal of the Brazilian Chemical Society. 2013;25(1):152-160.

28 Ahmadpour A, Rashidi H, Mahboub M, Farmad M. Comparing the performance of KOH with NaOH-activated anthracites in terms of methane storage. Adsorption Science and Technology. 2013;31(8):729-745.

29 Parthasarathy G, Santosh M. Pressure induced polymorphic phase transition of natural metamorphic Kalsilite; electrical resistivity and infrared spectroscopic investigations. Minerals. 2015;5(4):647-653.

30 Silveira E, Perez V, Reyero I, Serrano-Lotina A, Justo O. Biodiesel production from heterogeneous catalysts based K2 CO3 supported on extruded γ-Al2 O3 . Fuel. 2019;241:311-318.

31 Wen G, Yan Z. Transesterification of soybean oil to biodiesel over Kalsilite catalyst. Frontiers of Chemical Science and Engineering. 2011;5(3):325-329.

32 Kremenović A, Lazic B, Krüger H, Tribus M, Vulić P. Monoclinic structure and nonstoichiometry of “KAlSiO4 -O1”. Acta Crystallographica. Section C, Crystal Structure Communications. 2013;69(4):334-336.

33 Shan R, Shi J, Yan B, Chen G, Yao J, Liu C. Transesterification of palm oil to fatty acids methyl ester using K2 CO3 / palygorskite catalyst. Energy Conversion and Management. 2016;116:142-149.


Submetido em:
15/08/2020

Aceito em:
09/02/2021

61b265b9a9539506386db283 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections