Tecnologia em Metalurgia, Materiais e Mineração
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original - Edição Especial “Tributo ao Prof. T. R. Strohaecker”

Analysis of the applicability of polymeric solutions as cooling fluid in the quenching of low-alloy steels

Eduardo da Rosa Vieira, Jorge Luis Braz Medeiros, Luciano Volcanoglo Biehl, Vagner Machado Costa, Carlos Otávio Damas Martins, José de Souza

Downloads: 0
Views: 38


Engineering manufacturing involves the application of different steps to guarantee materials processability and performance in service. This, normally, requires machining, conformation, surface, and heat treatments. A modern concern is related to the process sustainability, the manufacturing capacity to achieve the required properties at low environmental impacts. In this sense, this work evaluated the application of the Polyalkylene Glycol solution (PAG) as a cooling medium of AISI 4140 low alloy steels. The materials were quenched in PAG, water, and Mineral Oil. The medium was compared by the martensite content and hardness distribution results. The results showed a significant advance in the PAG application, which guarantees a higher homogenization on martensite distribution at a low decrease in the hardness profile.


Manufacturing; Quenching; Polymer solutions; Low alloy steels.


1 Bonamigo AO, Medeiros JLB, Biehl LV, Borges HO, Souza JD. Influência da atmosfera de sinterização na densificação de uma liga Monel 400. Revista Liberato. 2019;20(34):169-176. http://dx.doi.org/10.31514/rliberato.2019v20n34.p169.

2 Oliveira MU, Medeiros JLB, Biehl LV, Avellaneda CAO, Martins COD, Souza JD, et al. Manufacturing against corrosion: increasing materials performance by the combination of cold work and heat. Materials Science. 2019;26(1):30-33. http://dx.doi.org/10.5755/j01.ms.26.1.17683.

3 Oliveira RCLM, Biehl LV, Medeiros JLB, Ferreira D Fo, Souza J. Análise comparativa entre a têmpera e partição versus a têmpera e revenimento para o aço SAE 4340. Matéria (Rio de Janeiro). 2019;24(3):1-9. http://dx.doi.org/10.1590/s1517-707620190003.0788.

4 Czichos H. Handbook of technical diagnostics. Germany: Springer; 2013.

5 Souza JD, Motta CAO, Schaeffer L. Utilización de ceniza volante aleada al material compuesto hierro-cobre-grafito mediante un proceso de pulvimetalurgia. Información Tecnológica. 2014;25:21-26. http://dx.doi.org/10.4067/S0718-07642014000500004.

6 Farag MM. Materials and process selection for engineering design. 3rd ed. USA: Ed. Taylor & Francis; 2014.

7 Ashby MF. Seleção de materiais no projeto mecânico. 4a ed. Rio de Janeiro: Elsevier; 2012.

8 Totten GE. Steel heat treatment handbook. 2nd ed. NY, USA: CRC Press; 2007.

9 International ASM. ASM handbook: heat treatment. Vol. 4, 10th ed. West Conshohocken: ASM International; 1990.

10 Bicharra EH, Medeiros JLB, Biehl LV, Vieira ER, Silva MD, Souza J, et al. Effect of different cycles of thermal fatigue in steel metallurgical aspects ASTM SA – 516 grade 60. American Journal of Engineering and Applied Sciences. 2020;13(3):436-444. http://dx.doi.org/10.3844/ajeassp.2020.436.444.

11 Krauss G. Martensite in steel: strength and structure. Materials Science and Engineering A. 1999;273-275:40-57.

12 Speich GR, Leslie WC. Tempering of steel. Metallurgical Transactions. 1972;3:1043-1054.

13 Macedo LC, Silva MF Jr, Medeiros JLB, Biehl LV, Martins COD, Souza JD. Efeito do tratamento térmico de alívio de tensões na microestrutura e tamanho de grão de um aço microligado. Revista Liberato. 2018;19:57-65.

14 Martins COD, Strohaecker TR, Rocha AS, Hirsch TK. Application of X-ray diffraction, micromagnetic and hole drilling methods for residual stress determination in a ball bearing steel ring. Experimental Mechanics (Online). Society for Experimental Mechanics. 2005;45(4):344-350.

15 Fernández R, Ferreira S, Ibáñez J, González DG. A multi-scale analysis of the residual stresses developed in a single-phase alloy cylinder after quenching. Materials & Design. 2017;137:117-127.

16 Buczek A, Telejko T. Investigation of heat transfer coefficient during quenching in various cooling agents. International Journal of Heat and Fluid Flow. 2013;44:358-364.

17 Hernandez HJV, Morales BH. A novel probe design to study wetting front kinematics during forced convective quenching. Experimental Thermal and Fluid Science. 2009;33(5):797-807.

18 Kobasko N, Moskalenko A, Dobryechir V. Research on use of low concentration inverse solubility polymers in water for hardening machine components and tools. EUREKA: Physics and Engineering. 2018;2:63-71.

19 Grum J, Bozic S. Influence of steel masses and quenchants on mechanical properties of steel. International Journal of Materials & Product Technology. 2005;24(1-4):224-240.

20 Monroe RW, Bates CE. Evaluating quenchants and facilities for hardening steel. Journal of Heat Treating. 1983;3:83-99.

21 Canale LCF, Totten GE. Quenching technology: a selected overview of the current state-of-the-art. Materials Research. 2005;8:461-467.

22 Koudil Z, Ikkene R, Mouzali M. Cooling capacity optimization: calculation of hardening power of aqueous solution based on poly(n-vinyl-2-pyrrolidone). Journal of Materials Engineering and Performance. 2014;23:551-559.

23 Ikkene R, Koudil Z, Mouzali M. Cooling characteristic of polymeric quenchant: calculation of HTC and prediction of microstructure and hardness. Journal of Materials Engineering and Performance. 2014;23:3819-3830.

24 Ramesh G, Ptabhu KN. Effect of polymer concentration on wetting and cooling performance during immersion quenching. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2016;47:859-881.

25 Vieira RV, Macedo RJ, Costa VM, Bicharra EH, Piovesan AS, Biehl LV, et al. Evaluation of cooling curves of steel AISI 4140 quenched under different concentrations of polyvinylpyrrolidone. Interciencia Jounal. 2020;45:310-322.

26 Grum J, Bozic S. Influence of steel masses and quenchants on mechanical properties of steel. International Journal of Materials & Product Technology. 2005;24(1-4):224-240.

27 Vieira RV, Biehl LV, Medeiros JLB, Silva AB, Silva MS. Efeitos da variação da concentração de solução polimérica aquosa a base de PVP na têmpera de aço AISI 4140. Revista Matéria. 2019;24(3):e12425.

28 Totic Y. The corrosion behavior of manganese phosphate coatings applied to AISI 4140 steel subjected to different heat treatments. Surface and Coatings Technology. 2004;200:2711-2717.

29 Hilder NA. Polymer quenchants: a review. Heat Treatments Methods. 1986;13:15-26.

30 Martins COD, Altenhofen A, Clarke TGR, Reguly A. Applying micromagnetic methods for the non-destructive metallurgical characterisation of AISI 4140 steel materials. Insight (Northampton). 2013;55:123-135.

31 International ASM. ASM Handbook: Metallography and Microstructures. Vol. 1, 10th ed. West Conshohocken: ASM International; 1990.

32 Joseph OO, Joseph OO, Leramo O, Ojudun OS. Effect of heat treatment on microstructure and mechanical properties of SAE 1025 steel. Journal of Materials and Environmental Science 2015;6(1):101-106.

33 Magee CL, Davies RG. On the volume expansion accompanying the f.c.c. to b.c.c. transformation in ferrous alloys. Acta Metallurgica. 1972;20(8):1031-1043.

Submetido em:

Aceito em:

608ab14aa9539516e6205ce4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections