Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212480
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Evaluation of compressive strength in geopolymer mortars produced using iron ore tailings ground by tumbling ball mills

Eduardo Júnio D’ Almeida Silva, Douglas Batista Mazzinghy

Downloads: 0
Views: 856

Abstract

The use of Iron Ore Tailings (IOT) as finer aggregates and/or fillers in geopolymer mortars is a possible alternative to use the high amount of solid mining wastes produced nowadays. In this study, exploratory tests were carried out to evaluate different proportions of materials that could produce a geopolymer mortar with high compressive strength. The higher compressive strength was obtained considering 50% of IOT, 25% of commercial metakaolin and 25% of an alkaline solution with 1:3 ratio of commercial sodium hydroxide solution (NaOH) and commercial sodium silicate solution (Na2 SiO3 ). The compressive strength obtained after 3 days of curing in room temperature was 23.5 MPa. Then an experiment was carried out to evaluate a possible increase in compressive strength promoted by grinding IOT. The IOT were ground for 1, 2 and 3 hours using a tumbling ball mill and the finer IOT were used to produce geopolymer mortars considering the same proportions of materials which higher compressive strength was obtained without grinding IOT. The grinding process for the IOT investigated showed to be not effective, as it gives similar compressive strength results as without grinding.

Keywords

Mining wastes; Grinding; Coproducts; Sustainability; Circular economy.

Referências

1 U.S. Geological Survey. Mineral Commodity Summaries. USA: U.S. Geological Survey; 2020 [cited 2020 June 30]. p. 88-89. Available at: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-iron-ore.pdf

2 ANM - Agencia Nacional Brasileira. Anuário Mineral Brasileiro 2019. pp 11. [cited 2019 Sep 2] Available at: https://www.gov.br/anm/pt-br/centrais-de-conteudo/publicacoes/serie-estatisticas-e-economia-mineral/anuariomineral/anuario-mineral-brasileiro/AMB2019_anobase2018_FINAL.pdf . In Portuguese.

3 Fundação Estadual do Meio Ambiente – FEAM. Inventário de Resíduos Sólidos Industriais Ano Base 2017. Belo Horizonte: FEAM; 2018 [cited 2020 Sep 2]. Available at: http://www.feam.br/images/stories/2018/RESIDUOS/Relat%C3%B3rio_Invent%C3%A1rio_Industria_2018_ano_base_2017.pdf

4 Samarco. One Year After the Fundão Dam Failure. Brasil: Samarco; 2016 [cited 2020 July 7]. Available at: https://www.samarco.com/wp-content/uploads/2020/12/Book-Samarco_Ingles_v1-2.pdf

5 Folha de São Paulo. Samarco usa acordo com a união para pedir absolvição de crime ambiental. Brasil: 2017. Available at: https://www1.folha.uol.com.br/cotidiano/2017/10/1929167-samarco-usa-acordo-com-uniao-para-pedirabsolvicao-de-crime-ambiental.shtml

6 Vale. Brumadinho [cited 2020 July 7]. Brasil: Vale; 2020 Available at: http://www.vale.com/esg/pt/Paginas/ Brumadinho.aspx

7 Vale. Vale atualiza informações sobre o rompimento da barragem de Brumadinho. Brasil: Vale; 2019 [cited 2020 July 7]. Available at: http://www.vale.com/brasil/PT/aboutvale/news/Paginas/Vale-atualiza-informacoes-sobre-orompimento-da-barragem-de-Brumadinho.aspx

8 Instituto Estadual de Florestas – IEF. Nota de Esclarecimento 12 - Desastre Barragem B1. Belo Horizonte: IEF; 2019. [cited 2020 July 7]. Available at: http://www.ief.mg.gov.br/noticias/2587-nota-de-esclarecimento-12-desastrebarragem-b1

9 Azevedo AGS, Strecker K, Lombardi CT. Produção de geopolímeros à base de metacaulim e cerâmica vermelha. Cerâmica. 2018;64:388-396. http://dx.doi.org/10.1590/0366-69132018643712420.

10 Pinto AT. Introduction to the study of geopolymers. Vila Real, Portugal: Universidade de Trás-os-Montes e Alto Douro (UTAD); 2006. In Portuguese.

11 Davidovits J. Properties of geopolymer cements. In: Proceedings First International Conference on Alkaline Cements and Concrets, Scientific Research Institute on Binders and Materials; 1994; Kiev, Ukraine. Kiev, Ukraine: Kiev State Technical University; 1994. p. 131-149

12 Davidovits J. Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry. 1991;37:1633-1656. http://dx.doi.org/10.1007/BF01912193.

13 Toffolo RVM, Filho JNS, Batista JOS, Silva SN, Cury AA, Peixoto RAF. Technical feasibility of concrete elements for paving produced with iron ore dam tailings. In 56° Congresso Brasileiro de Concreto – CBC; 2014; São Paulo. São Paulo: IBRACON; 2014.

14 Kuranchie FA, Shukla SK, Habibi D. Utilisation of iron ore mine tailings for the production of geopolymer bricks. International Journal of Mining, Reclamation and Environment. 2014;30(2):92-114. http://dx.doi.org/10.1080/17480 930.2014.993834.

15 Katti MM, Narayana L, Hasanbadi SHS, Ramshi R. Utilization of iron ore tailings in geopolymer concrete. International Research Journal of Engineering and Technology (IRJET), 2018;5(4):4522-4525. [cited 2020 Sep 2]. Available at: https://www.irjet.net/archives/V5/i4/IRJET-V5I41006.pdf

16 Guimarães ACPD, Oliveira MFM, Silva JP, Lameiras FS. Obtenção de geopolímero com adição de rejeito de mineração depositado na barragem de Candonga (Rio Doce-MG, Brasil). In: CLBMCS 2018 3º Congresso LusoBrasileiro Materiais de Construção Sustentáveis; 2018 February 14-16; Coimbra, Portugal. Braga: Universidade do Minho; 2018.

17 Borges PHR, Ramos FCR, Caetano TR, Panzerra TH, Santos H. Reuse of iron ore tailings in the production of geopolymer mortars. REM - International Engineering Journal. 2019;72:4. http://dx.doi.org/10.1590/0370-44672017720169.

18 Associação Brasileira de Normas Técnicas – ABNT. NBR 7215: Cimento Portland - Determinação da resistência à compressão. Rio de Janeiro: ABNT; 1996. [cited 2020 June 30]. p. 1-8. Available at: http://professor.pucgoias.edu.br/SiteDocente/admin/arquivosUpload/17827/material/NBR%207215%20-.pdf

19 Battagin AF. Norma comentada: ABNT NBR 16697 – cimento Portland – requisitos. Mapa da Obra; 2019 [cited 2020 June 30]. Available at: https://www.mapadaobra.com.br/capacitacao/nbr-16697/

20 Associação Brasileira de Normas Técnicas – ABNT. NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro: ABNT; 2009 [cited 2020 June 30]. p. 1-4. Available at: https://www.abntcatalogo.com.br/norma.aspx?ID=52163

21 Magalhães LF. Avaliação do rejeito de minério de ferro como material cimentício suplementar [dissertação de mestrado]. Belo Horizonte: Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG); 2018. [cited 2020 Dec 5]. Available at: http://www.posmat.cefetmg.br/wp-content/uploads/sites/120/2018/02/Disserta%C3%A7%C3%A3o_Luciano_Fernandes.pdf

22 Patankar SV, Jamkar S, Ghugal M. Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete. International Journal of Advanced Technology in Civil Engineering. 2013;2(1):79-83. http://dx.doi.org/10.13140/2.1.4792.1284.

23 Figueiredo RAM, Coura EC, Mazzinghy DB. Obtaining geopolimeric mortar from iron ore flotation waste. In: Proceedings of the XXVIII National Meeting on Mineral Treatment and Extractive Metallurgy; 2019; Belo Horizonte, MG. Belo Horizonte: UFMG; 2019. In Portuguese.

24 Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M. One-part alkali-activated materials: a review. Cement and Concrete Research. 2018;103:21-34. http://dx.doi.org/10.1016/j.cemconres.2017.10.001.

25 Provis JL. Alkali-activated materials. Cement and Concrete Research. 2018;114:40-48. http://dx.doi.org/10.1016/j.cemconres.2017.02.009.

26 Environment UN, Scrivener KL, John VM, Gartner EM. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research. 2018;114:2-26. http://dx.doi.org/10.1016/j.cemconres.2018.03.015.


Submetido em:
13/09/2020

Aceito em:
15/01/2021

60afb1dba95395136f0cff93 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections