Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212507
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Influência da variação de temperatura nos aspectos microestruturais e propriedades mecânicas no bronze de alumínio-níquel UNS C63000 submetido ao processo de têmpera

Influence of temperature variation on microstructural aspects and mechanical properties in nickel-aluminum bronze UNS C63000 submitted to the quenching process

Vinicius Torres dos Santos, Márcio Rodrigues da Silva, Huang Han Pang, Flávia Gonçalves Lobo, Givanildo Alves dos Santos, Wilson Carlos da Silva Junior, Antonio Augusto Couto

Downloads: 0
Views: 159

Resumo

Tendo em vista o grande campo de aplicação industrial de ligas de bronze, torna-se indispensável a realização de estudos metalúrgicos detalhados buscando o desenvolvimento dessas ligas, especificamente bronze de alumínio-níquel, e uma das principais frentes tecnológicas em que o bronze está inserido é nas aplicações aeroespaciais, as quais exigem propriedades mecânicas específicas para que o material de engenharia suporte os esforços envolvidos. Uma das possibilidades do alcance dessas propriedades é por meio da imposição das variáveis presentes no tratamento térmico, o que influência na microestrutura, devido ao fato do bronze possuir transformação martensítica, representada pela fase β, e consequentemente no comportamento mecânico do material. O objetivo deste trabalho é mostrar a relação entre o endurecimento por têmpera, com posterior revenimento, e as propriedades mecânicas geradas no bronze aeroespacial UNS C63000. Os resultados mostram que temperaturas de aquecimento na ordem de 785, 835 e 885 °C, seguidas de resfriamento brusco em água promovem a elevação dos resultados mecânicos, no entanto, nota-se a redução gradativa do percentual de fase α.

Palavras-chave

UNS C63000; Têmpera; Microestrutura; Propriedades mecânicas

Abstract

In view of the large field of industrial application of bronze alloys, it becomes essential to carry out detailed metallurgical studies seeking the development of these alloys, specifically nickel-aluminum bronze, and one of the main technological fronts in which bronze is inserted is in aerospace applications, which require specific mechanical properties for the engineering material to support the efforts involved. One of the possibilities of reaching the properties is through the imposition of the variables present in the heat treatment, which influences the microstructure, due to the fact that bronze has martensitic transformation represented by β phase, and, consequently, on the mechanical behavior of the material. The objective of this work is to show the relationship between hardening by quenching, with subsequent tempering, and the mechanical properties generated in the aerospace bronze UNS C63000. The results show that the score in the order of 785, 835 and 885 °C followed by sudden cooling in water promotes an increase in the mechanical results, however, it is noted a gradual reduction in the percentage of α phase

Keywords

UNS C63000; Quenching; Microstructure; Mechanical properties.

Referências

1. Richardson I. Guide to nickel aluminum bronze for engineers. London: Copper Alliance; 2016. (Copper Development Association; no. 222)

2 Vaidyanath LR. The manufacture of aluminium-bronze casting. Calcutta: Indian Copper Information Center; 1968.
3 Culpan EA, Rose G. Microstructural characterization of cast nickel aluminium bronze. Journal of Materials Science. 1978;13:1647-1656.
4 Nascimento MS, Santos GA, Teram R, Santos VT, Silva MR, Couto AA. Effects of thermal variables of solidification on the microstructure, hardness, and microhardness of Cu-Al-Ni-Fe alloys. Materials. 2019;12:1267. 

5 Meigh HJ. Cast and wrought aluminum bronzes properties-processes and structure. 2nd ed. London: Iom Communucations; 2000.
6 Rodrigues CA, Melo MLNM, Paes LES. Caracterização de uma liga de bronze de alumínio submetida a diferentes tratamentos térmicos. Metals and Materials. 2012;65(3):343-348.
7 Weston GM. Survey of nickel-aluminum bronze casting alloys for marine applications. Melbourne: Materials Research Laboratories; 1981. (Australia Department of Defence Report DSTO MRL-R807).
8 Ahanafrooz A, Hasan F, Lorimer GW, Ridley N. Microstructural development in complex nickel-aluminum bronze. Metallurgical Transactions A. 1983;14(10):1951-1956.
9 Faires KB. Characterization of microstructure and microtexture in longitudinal sections from friction stir processed Nickel-Aluminum Bronze [thesis]. Monterey: Naval Postgraduate School; 2003.
10 Pierce FA. The Isothermal deformation of nickel aluminum bronze in relation to friction stir processing [thesis]. Monterey: Naval Postgraduate School; 2004.
11 Sláma P, Dlouhy J, Kover M. Influence of heat treatment on the microstructure and mechanical properties of aluminium bronze. Materials Technology. 2014;48(4):599-604.
12 Brent KB. Characterization of microstructure and microtexture in longitudinal sections from friction stir processed nickel-aluminum bronze [thesis]. Monterey: Naval Postgraduate; 2003.
13 Hasan F, Jahanafrooz A, Lorimer GW, Ridley N. The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze. Metallurgical Transactions A. 1982;13a:1337-1345.
14 Howell PR. On the phases, microconstituents and microstructures in nickel-aluminum bronze. McLean: Department of Materials Science and Engineering; 2000 [acesso em 24 Abr. 2021]. Disponível em: http://www.copper.org/publications/pub_list/pdf/A1310-Microstructures-NickelAlumBronzes.pdf
15 Pisarek B. Model of Cu-Al-Fe-Ni bronze crystallization. Archives of Foundry Engineering. 2013;13(3):72-79. 
16 Wharton JA, Barik RC, Kear G, Wood RJK, Stokes KR, Walsh FC. The corrosion of nickel–aluminium bronze in seawater. Corrosion Science. 2005;47:3336-3367.
17 Specification AM. AMS 4640: aluminum bronze, bars, rods, shapes, tubes, and forgings 81,5Cu – 10,0Al – 4,8Ni – 3,0Fe – Draw and Stress Relieved (HR50) or Temper Annealed (TQ50). Warrendale: SAE Internacional Group; 2011.
18 American Standard Test Methods. ASTM E10: standard test method for brinell hardness of metallic materials. West Conshochen: ASTM; 2012.
19 American Standard Test Methods. ASTM E3: preparation of metallographic specimens. West Conshochen: ASTM; 2012
20 American Standard Test Methods. ASTM E1245: standard practice for determining the inclusion or second-phase constituent content of metals by automatic image analysis. West Conshochen: ASTM; 2008.


Submetido em:
20/11/2020

Aceito em:
24/04/2021

620e6ea9a953955f7e29fb63 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections