Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222096
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Projeto, construção e validação de um tribômetro “ball-cratering” de configuração mecânica “esfera-fixa”

Design, building and validation of a “ball-cratering” wear test equipment with “fixed-ball” mechanical configuration

Marcelo de Matos Macedo, João Henrique de Andrade Lima, Cláudio Moreira de Alcântara, Wilian da Silva Labiapari, Ronaldo Câmara Cozza

Downloads: 1
Views: 570

Resumo

O objetivo deste trabalho foi projetar, construir e validar um tribômetro para ensaios de desgaste micro-abrasivo, de configuração mecânica “ball-cratering” – “esfera-fixa”. Após o projeto e construção do equipamento, ensaios foram conduzidos com corpos-de-prova de aço-inoxidável ferrítico P410D com diferentes durezas; como contra-corpo, foi utilizada uma esfera de aço AISI 52100 e a lama abrasiva foi preparada com carbeto de silício preto – SiC e água destilada. Após a finalização dos ensaios, todas as crateras de desgaste foram analisadas por microscopia óptica, com o objetivo de medir o diâmetro das mesmas e calcular os respectivos volumes de desgaste. A validação do equipamento foi realizada com base no comportamento do volume de desgaste em função da dureza do corpo-de-prova e pela fundamentação teórica junto à Equação de Archard. O tribômetro apresentou excelente “reprodutibilidade”, caracterizada pelos baixos valores de desvios-padrão dos volumes de desgaste. A “funcionalidade” do mesmo foi condizente com a conceitualização científica provinda da Equação de Archard, em referência a capacidade do equipamento em gerar menores volumes de desgaste para maiores durezas superficiais.

Palavras-chave

Aço-inoxidável ferrítico; Desgaste micro-abrasivo; Ensaio “ball-cratering”

Abstract

The purpose of this work was design, build and validate a ball-cratering wear tests tribometer of fixed-ball mechanical configuration. After the design and construction, micro-abrasive wear tests were conducted with specimen of P410D ferritic stainless steel of different hardness levels; as counter-body, was used a AISI 52100 steel and the abrasive slurry was prepared with black silicon carbide and distilled water. Finalizing the experiments, all wear craters were analyzed by optical microscope, with the aim of measure their diameters and calculate the respective wear volumes. The validation of the equipment was conducted based on the behavior of the wear volume as a function of the hardness and by Archard Equation theoretical foundation. The tribometer presented an excellent reproducibility, characterized by low values of wear volumes standard-deviation. Its functionality was consistent with the scientific conceptualization from Archard Equation, in reference of equipment capacity to generate low wear volumes related to high superficial hardnesses.

Keywords

Ferritic stainless steel; Micro-abrasive wear; Ball-cratering wear test

Referências

1 Cozza RC. Estudo do comportamento do coeficiente de desgaste e dos modos de desgaste abrasivo em ensaios de desgaste micro-abrasivo [dissertação]. São Paulo: Escola Politécnica, Universidade de São Paulo; 2006.

2 Trezona RI, Allsopp DN, Hutchings IM. Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test. Wear. 1999;225-229:205-214.

3 Adachi K, Hutchings IM. Wear-mode mapping for the micro-scale abrasion test. Wear. 2003;255:23-29.

4 Adachi K, Hutchings IM. Sensitivity of wear rates in the micro-scale abrasion test to test conditions and material hardness. Wear. 2005;258:318-321.

5 Silva WM, Binder R, Mello JDB. Abrasive wear of steam-treated sintered iron. Wear. 2005;258:166-177.

6 Sinnett-Jones PE, Wharton JA, Wood RJK. Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear. 2005;259:898-909.

7 Cozza RC, de Mello JDB, Tanaka DK, Souza RM. Relationship between test severity and wear mode transition in micro-abrasive wear tests. Wear. 2007;263:111-116.

8 Cozza RC. Estudo do desgaste e atrito em ensaios micro-abrasivos por esfera rotativa fixa em condições de “força normal constante” e “pressão constante” [tese]. São Paulo: Escola Politécnica, Universidade de São Paulo; 2011.

9 Cozza RC, Rodrigues LC, Schön CG. Micro-abrasive wear behaviour of an iron aluminide alloy under conditions of room and elevated temperatures. In: Proceedings of the “TriboBR 2014 – 2nd International Brazilian Conference on Tribology”; 2014 Nov 3-5; Foz do Iguaçu, Brazil. São Paulo: ABM; 2014.

10 Cozza RC, Rodrigues LC, Schön CG. Analysis of the micro-abrasive wear behavior of an iron aluminide alloy under ambient and high-temperature conditions. Wear. 2015;330-331:250-260.

11 Cozza RC, Schön CG. Evidence of superposition between grooving abrasion and rolling abrasion. Tribol Trans. 2015;58:875-881.

12 Cozza RC. Estudo da obtenção do Regime Permanente de Desgaste em ensaios de desgaste micro-abrasivo por esfera rotativa conduzidos em corpos-de-prova de WC-Co P20 e aço-ferramenta M2. Matéria. 2018;23(1):e-11986.

13 Serrano ROP, de Castro ALP, Rico EAM, Pinto MA, Viana EMF, Martinez CB. Abrasive effects of sediments on impellers of pumps used for catching raw water. Rev Bras Eng Agric Ambient. 2018;22(9):591-596.

14 Serrano ROP, Santos LP, Viana EMF, Pinto MA, Martinez CB. Case study: Effects of sediment concentration on the wear of fluvial water pump impellers on Brazil’s Acre River. Wear. 2018;408-409:131-137.

15 Silva JPC, Scandian C, Franco AR Jr. Mapas de desgaste microabrasivo do aço inoxidável austenítico AISI 316L: Uma análise comparativa de superfícies não nitretadas e nitretadas a plasma. In: Anais do 1º Workshop de Tratamentos de Superfícies de Ligas Resistentes à Corrosão; 69º Congresso Anual da ABM; 2014 July 21-25; São Paulo, Brazil. São Paulo: ABM; 2014

16 Labiapari WS. Abrasão-corrosão em aços-inoxidáveis ferríticos [tese]. Uberlândia: Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia; 2015.

17 Cozza RC, Tanaka DK, Souza RM. Micro-abrasive wear of DC and pulsed DC titanium nitride thin films with different levels of film residual stresses. Surf Coat Technol. 2006;201:4242-4246.

18 Rutherford KL, Hutchings IM. A micro-abrasive wear test, with particular application to coated systems. Surf Coat Technol. 1996;79:231-239.

19 Rutherford KL, Hutchings IM. Micro-scale abrasive wear testing of PVD coatings on curved substrates. Tribol Lett. 1996;2:1-11.

20 Trezona RI, Hutchings IM. Three-body abrasive wear testing of soft materials. Wear. 1999;233-235:209-221.

21 Batista JCA, Matthews A, Godoy C. Micro-abrasive wear of PVD duplex and single-layered coatings. Surf Coat Technol. 2001;142-144:1137-1143.

22 Allsopp DN, Hutchings IM. Micro-scale abrasion and scratch response of PVD coatings at elevated temperatures. Wear. 2001;251:1308-1314.

23 Batista JCA, Godoy C, Matthews A. Micro-scale abrasive wear testing of duplex and non-duplex (single-layered) PVD (Ti,Al)N, TiN and Cr-N coatings. Tribol Int. 2002;35:363-372.

24 Batista JCA, Joseph MC, Godoy C, Matthews A. Micro-abrasion wear testing of PVD TiN coatings on untreated and plasma nitrided AISI H13 steel. Wear. 2002;249:971-979.

25 Ramalho A. Micro-scale abrasive wear of coated surfaces-prediction models. Surf Coat Technol. 2005;197:358-366.

26 Shipway PH, Howell L. Microscale abrasion-corrosion behaviour of WC-Co hardmetals and HVOF sprayed coatings. Wear. 2005;258:303-312.

27 Chen H, Xu C, Zhou Q, Hutchings IM, Shipway PH, Liu J. Micro-scale abrasive wear behaviour of HVOF sprayed and laser-remelted conventional and nanostructured WC-Co coatings. Wear. 2005;258:333-338.

28 Cozza RC. Effect of pressure on abrasive wear mode transitions in micro-abrasive wear tests of WC-Co P20. Tribol Int. 2013;57:266-271.

29 Rutherford KL, Hutchings IM. Theory and application of a micro-scale abrasive wear test. J Test Eval. 1997;25(2):250-260.

30 Cozza RC. A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests. Surf Coat Technol. 2013;215:224-233.

31 Cozza RC. Influence of the normal force, abrasive slurry concentration and abrasive wear modes on the coefficient of friction in ball-cratering wear tests. Tribol Int. 2014;70:52-62.

32 Ceschini L, Palombarini G, Sambogna G, Firrao D, Scavino G, Ubertalli G. Friction and wear behaviour of sintered steels submitted to sliding and abrasion tests. Tribol Int. 2006;39:748-755.

33 Shipway PH, Hogg JJ. Dependence of microscale abrasion mechanisms of WC-Co hardmetals on abrasive type. Wear. 2005;259:44-51.

34 Stack MM, Mathew MT. Micro-abrasion transitions of metallic materials. Wear. 2003;255:14-22.

35 Stack MM, Mathew MT. Mapping the micro-abrasion resistance of WC/Co based coatings in aqueous conditions. Surf Coat Technol. 2004;183:337-346.

36 Cozza RC, Tanaka DK, Souza RM. Friction coefficient and abrasive wear modes in ball-cratering tests conducted at constant normal force and constant pressure: preliminary results. Wear. 2009;267:61-70.


Submetido em:
17/11/2019

Aceito em:
16/11/2021

6427164fa9539578af38c982 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections