Modelling non-ideal detonations in commercial explosives
Modelagem de detonações não-ideais de explosivos comerciais
Paulo José Costa Couceiro Júnior, Juan Navarro Miguel
Abstract
Highly non-ideal explosives usually react expressively below their ideal velocities of detonation. In these cases, dimensional effects and product heterogeneities become important to proper model their respective detonation state. Although Direct Numerical Simulation (DNS) techniques can provide a complete and exact solution for this problem, their actual computation cost are still not practical for industrial applications. In order to minimize these constrains, a simplified two-dimensional steady non-ideal detonation model for cylindrical stick explosives is presented. Based on an ellipsoidal shock shape approach (ESSA), the proposed model combines the quasione-dimensional theory for the axial flow solution with the unconfined sonic post-flow conditions at the edge of the explosive. Once calibrated, the model offers the possibility to predict the non-ideal detonation state for any charge diameter, resulting in a full mapping of the diameter-effect curve of the explosive. In addition, the effect of the inert confiner on the detonation flow is calculated by coupling a mechanistic confinement approach with the ESSA model. Thus, the proposed engineering approach is used to model the main properties of one of the most common ammonium nitrate-based explosive used in mining and quarrying industries, including the complete axial flow solution.
Keywords
Resumo
Explosivos altamente não-ideais tendem a reagir com velocidades de detonação expressivamente inferiores às suas velocidades ideais. Nesses casos, os efeitos dimensionais do problema e heterogeneidades dos produtos se tornam fundamentais para realizar, apropriadamente, a modelagem dos seus respectivos estados de detonação. Ainda que as simulações numéricas diretas (DNS) possam prover uma completa e exata solução para esse problema, seu alto custo computacional ainda é um fator restritivo para sua aplicação prática na indústria. A fim de minimizar estas restrições, um modelo de detonação não-ideal estacionário bidimensional para explosivos cilíndricos é desenvolvido. Baseado na aproximação elipsoidal da frente de choque (ESSA), o modelo proposto se fundamenta na teoria quasi-unidimensional para a solução do fluxo reativo axial, combinando o critério de fluxo sônico após o choque com algumas condições limites na borda da carga explosiva. Uma vez calibrado, o modelo oferece a possibilidade de prever o estado não-ideal de detonação em qualquer diâmetro de carga, resultando no mapeamento completo da curva do efeito-diâmetro do explosivo. Adicionalmente, o efeito do material confinante na detonação é calculado ao acoplar uma aproximação mecanicista do confinamento ao modelo ESSA. Portanto, o modelo proposto é usado para modelar as principais propriedades de um dos explosivos baseados em nitrato de amônio mais comuns na indústria mineira e pedreiras, incluindo a completa descrição do fluxo axial.
Palavras-chave
Referências
1 Sharpe GJ, Braithwaite M. Steady non-ideal detonations in cylindrical sticks of explosives. Journal of Engineering Mathematics. 2005;53:29-58.
2 Sharpe GJ, Bdzil JB. Interactions of inert confiners with explosives. Journal of Engineering Mathematics. 2006;54:273-298.
3 Sellers EJ. Velocity of detonation of non-ideal explosives: investigating the influence of confinement. In: International Society of Explosives Engineers. Proceeding of the 33rd Annual Conference on Explosives and Blasting Technique; 2007 January 28-31; Nashville, Tennessee, USA. Nashville: ISEE; 2007. Vol. 2, p. 1-11.
4 Esen S. A non-ideal detonation model for evaluating the performance of explosives in rock blasting. Rock Mechanics and Rock Engineering. 2008;41(3):467-497.
5 Sharpe GJ, Luheshi MY, Braithwaite M, Falle S AEG. Steady non-ideal detonation. Shock Compression of Condensed Matter. 2009;1195:452-457.
6 Sellers E, Furtney J, Onederra I, Chitombo G. Improved understanding of explosive–rock interactions using the hybrid stress blasting Model. Journal of the Southern African Institute of Mining and Metallurgy. 2012;112(8):721-728.
7 Braithwaite M, Sharpe GJ. Non-Ideal detonation behavior in commercial explosives. In: Fragblast. Proceeding of the 10th Symposium on Rock Fragmentation by Blasting. Performance of Explosives and New Developments; 2012 November 26-29; New Delhi, India. New Delhi: FRABLAST; 2013. p. 11-16.
8 Kirby IJ, Leiper GA. A small divergent detonation theory for intermolecular explosives. In: Office of Naval Research. Proceeding of the 8th Symposium (International) on Detonation. NSWC MP 86-194. 1985 July 15-19; Albuquerque, NM, USA. Albuquerque: Naval Surface Weapons Center; 1985. p. 176-186.
9 Watt SD, Sharpe GJ, Falle SA, Braithwaite M. A streamline approach to two-dimensional steady non-ideal detonation: the straight streamline approximation. Journal of Engineering Mathematics. 2012;75(1):1-14.
10 Stewart S. Lectures on detonation physics: Introduction to the Theory of Detonation Shock Dynamics. WL-TR-94-7089. Champaign: University of Illinois; 1993.
11 Yao J, Stewart DS. On the dynamics of multi-dimensional detonation. Journal of Fluid Mechanics. 1996;309:225-275.
12 Stewart DS, Yao J. The normal detonation shock velocity-curvature relationship for materials with nonideal equation of state and multiple turning points. Combustion and Flame. 1998;113:224-235.
13 Sharpe G. The structure of planar and curved detonation waves with reversible reactions. Physics of Fluids. 2000;12(11):3007-3020.
14 Kennedy DL. Multi-valued normal shock velocity versus curvature relationships for highly non-ideal explosives. In: Office of Naval Research. Proceeding of the 11th Symposium (International) on Detonation. 1998 August 30 - September 4; Snowmass, Colorado, USA. Arlington: Office of Naval Research; 1998. p. 181-192.
15 Cartwright M. Modelling of non-ideal steady detonations [PhD thesis]. Leeds: University of Leeds; 2016.
16 Eyring H, Powell RE, Duffey GH, Parlin RB. The stability of detonation. Chemical Reviews. 1949;45(1):69-181.
17 Souers PC, Vitello P, Esen S, Bilgin HA. The effects of containment on detonation velocity. Propellants, Explosives, Pyrotechnics. 2004;29(1):19-26.
18 Kirby I, Chan J, Minchinton A. Advances in predicting the effects of non-ideal detonation on blasting. In: International Society of Explosives Engineers. Proceeding of 40th Annual Conference on Explosives and Blasting Technique; 2014 February 9-12; Denver, Colorado, USA. Denver: ISEE; 2014. p. 1-14.
19 Cowperthwaite M. An exact solution for axial-flow in cylindrically symmetrical, steady state detonation in polytropic explosive with an arbitrary rate of decomposition. Physics of Fluids. 1994;6(3):1357-1378.
20 Bilgin HA, Esen S. Assessment of ideality of some commercial explosives. In: International Society of Explosives Engineers. Proceedings of the 25th Annual Conference on Explosives & Blasting Technique; 1999 February 7-10; Nashville, Tennessee, USA. Nashville: ISEE; 1999. p. 35-44.
21 Sharpe GJ, Braithwaite M. Blast modelling towards a predictive model for the performance of commercial explosives in rock blasting. Quarry Management. 2013;2:22-28.
Submetido em:
09/11/2019
Aceito em:
08/12/2021