Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222423
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Carbonetos de WC com fase ligante Co-Ni, comportamento da dureza e resistência à ruptura transversal em função da adição de SiC-α e seus efeitos na temperatura de sinterização

WC cemented carbides with based Co-Ni binder phase – hardness and transverse rupture strength behaviour as a function of SiC-α additions and their effects on the sintering temperature

Daniel Rodrigues, Francisco Yastami Nakamoto, Givanildo Alves dos Santos, Fabio Miranda, Gilmar Ferreira Batalha, Laerte Fernandes

Downloads: 0
Views: 605

Resumo

A vantagem de substituir o WC (15,67 g/cm3 ) pelo SiC-α (3,21 g/cm3 ) é o custo da matéria-prima e a baixa densidade do carboneto. A substituição do Co (8,90 g/cm3 ) pelo Ni (8,91 g/cm3 ), é devido à escassez da matéria-prima, restrições ao uso devido a exposição ocupacional e o preço comercial. Em relação aos experimentos realizados neste estudo, foram preparadas 3 misturas, sendo a primeira, a partir de WC-11(Co, Ni) e as demais reforçadas com adição de teores 0,6% e 1,2% de SiC-α, em peso, que foram produzidas pela técnica de metalurgia do pó convencional. Os compactados a verde foram sinterizados em fornos Sinter HIP, sinterização a vácuo em 1.380 e 1.420 ºC durante 60 minutos de estabilização e submetidos a uma pressão de 20 bar com nitrogênio. Os resultados apresentaram que com o excesso de carbono livre presente matéria-prima e mais o aumento da temperatura de sinterização influenciaram fortemente no crescimento do grão de WC e no surgimento de porosidades que consequentemente afetaram as propriedades mecânicas das ligas de metal duro.

Palavras-chave

Metalurgia do pó; Metal duro; SiC-α; Sinterização; Microestrutura e propriedades.

Abstract

The advantage of replacing the WC (15.67 g/cm3 ) with SiC-α (3.21 g/cm3 ) is the cost of the raw material and the low density. The substitution of Co (8.90 g/cm3 ) for Ni (8.91 g/cm3 ), it is due to shortages of raw material, restrictions on use due to occupational exposure and the commercial price. In relation to the experiments carried out in this work, 3 mixtures were prepared, the first being from WC-11 (Co, Ni) and the others reinforced with the addition of 0.6% and 1.2% of SiC-α, by weight, which were produced by the conventional powder metallurgy technique. The green compacted ones were sintered in SinterHIP ovens, vacuum sintered at 1,380 and 1,420 ºC for 60 minutes of stabilization and subjected to a pressure of 20 bar with nitrogen. The results showed that, with the excess of free carbon present in the raw material and the increase in the sintering temperature, strongly influence the growth of the WC grain, in the appearance of porosities that consequently affected the mechanical properties of hardmetal.

Keywords

Powder metallurgy; Hardmetals; SiC-α; Sintering; Microstructure and properties.

Referências

1 Roulon Z, Missiaen J-M, Lay S. Carbide grain growth in cemented carbides sintered with alternative binders. International Journal of Refractory Metals & Hard Materials. 2019;86:105088.
2 Konyashin I, Klyachko L. History of cemented carbides in the Soviet Union. International Journal of Refractory Metals & Hard Materials. 2015;49:9-26.
3 Toller L, Norgren S. Mechanisms of plastic deformation in WC-Co and WC-Ni-Fe turning inserts. In: Proceedings of the 19th Plansee Seminar. Austria: Plansee Group, 2017.
4 Correa EO, Santos JN, Klein AN. Microstructure, and mechanical properties of WC Ni–Si based cemented carbides developed by powder metallurgy. International Journal of Refractory Metals & Hard Materials. 2010;28:572-575.
5 Lima TCF, Tenório JAS. Utilização de matéria-prima aglomerada na produção de carbureto de silício em escala piloto. REM. Revista Escola de Minas. 2011;64(3):341-345.
6 American Society for Testing and Materials. ASTM B294-17: standard test method for hardness testing of cemented carbides. West Conshohocken, PA: ASTM International; 2018.
7 International Organization for Standardization. ISO 3738-1. Hardmetals: rockwell hardness test (scale A) — Part 1: test method. Geneva: ISO; 1982.
8 American Society for Testing and Materials. ASTM E112: standard test methods for determining average grain size. West Conshohocken, PA: ASTM International; 2013.
9 American Society for Testing and Materials. ASTM B406-76: standard test method for transverse rupture strength of cemented carbides. West Conshohocken, PA: ASTM International; 2015.
10 Fernandes CM, Senos AMR. Cemented carbide phase diagrams: a review. International Journal of Refractory Metals & Hard Materials. 2011;29:405-418.
11 Mannesson K. WC grain growth during sintering of cemented carbides: experiments and simulations [thesis]. Stockholm: Universitet Service US AB; 2011.
12 Okamoto H, Schlesinger ME, Mueller EM. ASM handbook Vol. 3: alloy phase diagrams. Ohio: ASM International; 2016.
13 Eisen WB, Ferguson BL, German RM, Lacocca R, Lee PW, Madan D, et al. ASM handbook Vol. 7: powder metal technologies, and applications metallurgy cermets and cemented carbides. Ohio: ASM International; 1998.
14 Guillermet AF. The Co-Fe-Ni-W-C phase diagram: a thermodynamic description and calculated sections for (Co-Fe-Ni) bonded cemented WC tools. Zeit. für Metall. 1989;2(80):83-94.
15 Roulon Z. Effect of binder on sintering and microstructure of cemented car-bides [thesis]. Grenoble: Université Grenoble Alpes; 2019.
16 Bjäreborn O. WC grain size distribution during sintering of WC-Co cemented carbides [thesis]. Sweden: Lund University; 2016.
17 García J, Ciprés VC, Blomqvist A, Kaplan B. Cemented carbide microstructures: a review. International Journal of Refractory Metals & Hard Materials. 2018;80:40-68.


Submetido em:
31/08/2020

Aceito em:
01/04/2021

62145064a953955f6e35b153 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections