Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222434
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Caracterização da ductilidade em fluência dos aços inoxidáveis AISI 321 e AISI 441 pela metodologia Sag Test

Characterization of the creep-ductility of AISI 321 and AISI 441 stainless steels applying the Sag Test methodology

Denilson Pereira Melo, Paulo Sérgio Moreira, Geraldo Lúcio de Faria

Downloads: 1
Views: 105

Resumo

As regulamentações ambientais estão cada vez mais rigorosas em relação à emissão de gases pelos automóveis. Por esse motivo, as grandes montadoras tiveram que pensar em soluções para continuar oferecendo motores potentes, mas menos poluentes. Nesse cenário, há uma tendência mundial de se substituir os clássicos motores aspirados por motores turbinados. Com a implementação do sistema turbo, as temperaturas máximas de trabalho de alguns componentes do escapamento aumentam de 900 °C para 1050 °C e, consequentemente, a seleção de materiais para a manufatura dos mesmos é algo crítico. Nesse contexto, esse trabalho avaliou a ductilidade em fluência (Sag Test) do aço inoxidável ferrítico AISI 441, geralmente utilizado na manufatura de coletores e catalizadores de veículos com motores aspirados, comparando-o com o desempenho do aço inoxidável austenítico AISI 321. Concluiu-se que o comportamento em fluência dos aços AISI 321 e AISI 441 são semelhantes nas temperaturas de 900 °C e 950 °C. Entretanto, na temperatura de 1000 °C o aço AISI 441 apresentou uma expressiva mudança de comportamento, atingindo uma flecha máxima de 26 mm após 100 h de ensaio, enquanto o aço AISI 321 apresentou apenas 5 mm. Baseado nos resultados obtidos, pode-se afirmar que o aço AISI 441 apresenta desempenho limitado em fluência para aplicação em escapamentos automotivos com motorização turbo.

Palavras-chave

AISI 441; AISI 321; Fluência; Sag Test; Escapamento automotivo.

Abstract

Environmental regulations are increasingly strict in relation to the emission of pollutants by vehicles. For this reason, the car manufacturers had to think about solutions to continue offering powerful, but less polluting engines. In this scenario, there is a worldwide trend to replace the classic aspirated engines with turbocharged engines. Due to the implementation of the turbo system, the maximum working temperatures of some exhaust components increase from 900 °C to 1050 °C and, consequently, the material selection for their manufacture is critical. In this context, this work evaluated the creep behavior (Sag Test) of the ferritic stainless steel AISI 441, generally used in the manufacture of collectors and catalysts for aspirated engine vehicles, comparing it with the performance of AISI 321 austenitic stainless steel. The creep behaviors of AISI 321 and AISI 441 steels are similar at 900 °C and 950 °C. However, at 1000 °C, AISI 441 steel presented a significant behavior change, reaching a maximum deflection of 26 mm after 100 h of testing, while AISI 321 steel presented only 5 mm. Based on the obtained results, it can be stated that AISI 441 steel presents limited creep performance for application in automotive exhausts with turbo engine.

Keywords

AISI 441; AISI 321; Creep-ductility; Sag Test; Automotive exhaust system

Referências

1 Inoue Y, Kikuchi M. Present and future trends of stainless steel for automotive exhaust system. Nippon Steel Technical Report. 2003;28:62-69.

2 Juuti T, Mannien T, Uusikallio S, Kömi J, Porter D. New ferritic stainless steel for service temperatures up to 1050°C utilizing intermetallic phase transformation. Metals. 2019;9(664):1-11.

3 Hua M, Garcia CI, DeArdo AJ, Tither G. Dual-Stabilized ferritic stainless steels for demanding applications such as automotive exhaust systems. Ironmaking & Steelmaking. 1997;24:41-44.

4 Solução em aço inox para o segmento automotivo. 2016 [acesso em 29 jan. 2020]. Disponível em: https://www.aperam.com/sites/default/files/documents/Aperam%20-%20Inox%20no%20setor%20Automotivo.pdf.

5 Faria RA. Efeito dos elementos Ti e Nb no comportamento em fadiga de aços inoxidáveis ferríticos utilizados no sistema de exaustão de veículos automotores [tese]. Ouro Preto: REDEMAT; 2006.

6 Deutsches Institut für Normung. DIN EN10088-1: stainless steels – Part 1: list of stainless steels. Berlin: DIN; 2014.

7 American Society for Testing and Materials. ASTM E3-11: Standard guide for preparation of metallographic specimens. West Conshohocken, PA: ASTM International; 2017.

8 American Society for Testing and Materials. ASTM E112-12: standard test methods for determining average grain size. West Conshohocken, PA: ASTM International; 2012.

9 American Society for Testing and Materials. ASTM E1382-97: standard test methods for determining average grain size using semiautomatic and automatic image analysis. West Conshohocken, PA: ASTM International; 2015.

10 American Society for Testing and Materials. ASTM E92-17: standard test methods for vickers hardness and knoop hardness of metallic materials. West Conshohocken, PA: ASTM International; 2017.

11 American Society for Testing and Materials. ASTM E8/E8M-16a: standard test methods for tension testing of metallic materials. West Conshohocken, PA: ASTM International; 2016.

12 Payer JH, Staehle RW. The dissolution behavior of Cr23C6 and TiC related to the stainless steels in which they occur. Corrosion. 1975;31(1):30-38.

13 Hoffmann C, Mccevily AJ. The effect of high temperature low cycle fatigue on the corrosion resistance of austenitic stainless steels. Metallurgical Transactions A. 1982;13:923-927.

14 Schwind M, Kallqvist J, Nilsson JO, Agren J, Andren HO. σ-phase precipitation in stabilized austenitic stainless steels. Acta Materialia. 2000;48:2473-2481.

15 Fujita N, Bhadeshia HKDH, Kikuchi M. Precipitation sequence in niobium-alloyed ferritic stainless steel. Modelling and Simulation in Materials Science and Engineering. 2004;12:273-284.

16 Morris DC, Munos-Morris MA, Baudin C. The high-temperature strength of some Fe2Al alloys. Acta Materialia. 2004;52:2827-2836.

17 Mankari K, Acharyya SG. Failure analysis of AISI 321 stainless steel welded pipes in solar thermal power plants. Engineering Failure Analysis. 2018;86:33-43.

18 Min KS, Lee SC, Nam SW. Effects of TiC and Cr23C6 carbides on creep-fatigue properties in AISI 321 stainless steel. Steel Mater. Trans. 2002;43:2808-2812.

19 Min KS, Nam SW. Correlation between characteristics of grain boundary carbides and creep-fatigue properties in AISI 321stainless steel. Journal of Nuclear Materials. 2003;322:91-97.

20 Zimny CI. The evolution of laves phase precipitation in AISI 441 under SOFC operation conditions and the effects on oxide growth [dissertation]. Bozeman, Montana: Montana State University; 2016.

21 Sello MP, Stumpf WE. Laves phase precipitation and its transformation kinetics in ferritic stainless steel type AISI 441. Materials Science and Engineering A. 2011;528(3):1840-1847.

22 Sello MP, Stumpf WE. Laves phase embrittlement of the ferritic stainless steel type AISI 441. Materials Science and Engineering A. 2010;527:5194-5202.

23 Alencar RAF. Estudo do efeito de mudanças sucessivas na trajetória de deformação no comportamento mecânico dos aços inoxidáveis AISI 430 e AISI 441 [dissertação]. Belo Horizonte: CEFET-MG; 2016.

24 Mousa SM. Improvement the hardness of stainless steel 321 by magnetic abrasive finishing process. Al-Nahrain Journal for Engineering Sciences. 2017;20:838-845.

25 Olson GB, Cohen M. Kinetics of strain-induced martensitic nucleation. Metallurgical Transactions A. 1975;6:791-795.

26 Dan WJ, Li SH, Zhang WG, Lin ZQ. The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel. Materials & Design. 2008;29:604-612.

27 Lo KH, Shek CH, Lai JKL. Recent Developments in Stainless Steels. Materials Science and Engineering. 2009;65:39-104.

28 Frost HJ, Ashby MF. Deformation mechanism maps: the plasticity and creep of metals and ceramics. Oxford, UK: Pergamon Press, 1982.

29 Dollman M. The Influence of microstructure on the creep properties of 441 ferritic stainless steel [dissertation]. Cape Town: University of Cape Town; 2003.

30 Cain V. High temperature creep behavior of niobium bearing ferritic stainless steels. [dissertation]. Cape Town: University of Cape Town; 2005.

31 Lai JKL. Precipitation and creep behavior of AISI type 321 steel. High Temperature Technology. 1988;6(2):73-77.

32 Stouffer DC, Dame LT. Inelastic deformation of metals: models, mechanical properties and metallurgy. Canada: Wiley; 1996.

33 Yavari P, Miller DA, Langdon, TG. An investigation of harper-dorn creep: mechanical and microstructural characteristics. Acta Metallurgica. 1981;30(4):871-879.

34 American Society for Testing and Materials. ASTM E139-11: standard test methods for conducting creep, creeprupture, and stress-rupture test of metallic materials. West Conshohocken, PA: ASTM International; 2018.


Submetido em:
31/07/2020

Aceito em:
02/12/2020

6238912ea953955fb547a2d2 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections