Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222578
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Evolução microestrutural da liga de magnésio MRI 230D submetida a diferentes rotas de processamento em estado semissólido: SIMA e Reofundição  

Microstructural evolution of the magnesium alloy MRI 230D submitted to different processing routes in a semisolid state: SIMA and Rheocast

Evolução microestrutural da liga de magnésio MRI 230D submetida a diferentes rotas de processamento em estado semissólido: SIMA e Reofundição

Downloads: 0
Views: 98

Resumo

O processamento em estado semissólido visa obter uma microestrutura com grãos globulares, refinados e com propriedades isotrópicas, que tende a apresentar melhores propriedades mecânicas que a morfologia bruta de fusão. A liga de magnésio MRI 230D (Mg–Al6,45–Ca2,25–Mn0,27–Sr0,25–Sn0,84), de alta resistência à fluência, foi submetida a diferentes rotas de processamento em estado semissólido, SIMA (Strain Induced Melt Activation) e Reofundição, com o objetivo de avaliar a influência dos processos na microestrutura da liga. Para a rota SIMA a liga foi previamente laminada, em passe único com deformação de 8%, na temperatura de 250 °C. Posteriormente, a liga foi tratada termicamente nas temperaturas de 540 °C e 570 °C, nos tempos de 40 e 60 minutos. Na reofundição o material foi fundido a 660 °C e lentamente resfriado até a temperatura de processamento (595 °C), e então agitado mecanicamente. Os tempos de agitação variaram de 0 (sem agitação), 1, 2, 4 e 8 minutos. Os resfriamentos, em ambos os processos, foram realizados por imersão em água (25 °C). As amostras foram analisadas por microscopia óptica e eletrônica para avaliação da microestrutura, assim como analisadas termicamente. Os resultados mostraram a formação de grãos com maior fator de forma no processo SIMA além de uma morfologia mais grosseira e homogênea do que pelo processo de reofundição.

Palavras-chave

Ligas de magnésio; MRI 230D; Semissólido; Microestrutura globular

Abstract

Processing in a semisolid state aims to obtain a microstructure with globular, refined grains and isotropic properties, which tends to present better mechanical properties than as cast morphology. The magnesium alloy MRI 230D (Mg–Al6.45– Ca2.25–Mn0.27–Sr0.25–Sn0.84) was submitted to different processing routes in a semi-solid state, SIMA (Strain Induced Melt Activation) and Rheocasting, to evaluate the influence of these processes on the alloy microstructure. For the SIMA route, the alloy was previously laminated, in single pass with 8% deformation, at the temperature of 250 °C. Subsequently, it was heat treated at different temperatures (540 °C and 570 °C) over 40 and 60 minutes. In the rheocasting process, the material was melted at 660 °C and slowly cooled down to the processing temperature (595 °C) and then mechanically stirred. The mechanical stirring times varied from 0 (without stirring), 1, 2, 4 and 8 minutes. Cooling was performed by immersion in water (25 °C) in both processes. The samples were analyzed by optical and electronic microscopy to evaluate the microstructure, as well as thermally analyzed. The results showed that the SIMA process reach a superior shape factor, in addition to a coarser and homogeneous morphology than rheocasting.

Keywords

Magnesium alloys; MRI 230D; Semisolid; Globular microstructure.

Referências

1 Mo N, Tan Q, Bermingham M, Huang Y. Current development of creep-resistant magnesium cast alloys: a review. Materials & Design. 2018;125:422-442.
2 Guo H, Zhang A, Hu B, Ding Y, Liu X. Refining microstructure of AZ91 magnesium alloy by introducing limited angular oscillation during initial stage of solidification. Materials Science and Engineering A. 2012;532:221-229.
3 Yang X, Hou H, Zhao Y, Yang L, Han P. First-principles investigation of the structural, electronic and elastic properties of Al2Ca and Al4Sr phases in Mg-Al-Ca(Sr) alloy. Journal of Wuhan University of Technology, Materials Science. 2014;29:1049-1056.
4 Mohammed MN, Omar MZ, Salleh MS, Alhawari KS, Kapranos P. Semisolid metal processing techniques for nondendritic feedstock production. The Scientific World Journal. 2013;2013:1-16.
5 Jiang J, Wang Y, Xiao G, Nie X. Comparison of microstructural evolution of 7075 aluminium alloy fabricated by SIMA and RAP. Journal of Processing Technology. 2016;230:361-372.
6 Bartex SLT, Schaeffer L, De Barcellos VK. Morphological evolution of Mg-Al-La-Ca alloy induced by a mechanical stirring process. Journal of Materials Engineering and Performance. 2019;28:3878-3886.
7 Zhang L, Wu G, Wang S, Ding, W. Effect of cooling condition on microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process. Transactions of Nonferrous Metals Society of China. 2012;22(10):2357-2363.
8 Terbush JR. Creep deformation in Mg-Al-Ca-based alloys [thesis]. Ann Arbor: University of Michigan; 2010.
9 Rzychoń T. Quantitative procedure for evaluation of microstructure of cast Mg-Al-Ca-Sr magnesium alloy. Archives of Foundry Engineering. 2010;10:139-142.
10 Zimpel I, Bartex SLT, De Barcellos VK. Effects of stirring time and cooling rate on the rheocast microstructure and mechanical properties of magnesium alloy MRI 230D. Materials Research. 2021:24(3):e20200482.
11 Yang X, Zhu Y, Miura H, Sakai T. Static recrystallization behavior of hot-deformed magnesium alloy AZ31 during isothermal annealing. Transactions of Nonferrous Metals Society of China. 2010;20(7):1269-1274.
12 Bolouri A, Shahmiri M, Cheshmeh ENH. Microstructural evolution during semisolid state strain induced melt activation process of aluminum 7075 alloy. Transactions of Nonferrous Metals Society of China. 2010;20:1663-1671.
13 Yim CD, Shin KS. Changes in microstructure and hardness of rheocast AZ91HP magnesium alloy with stirring conditions. Materials Science and Engineering A. 2005;395:226-232.
14 Gibbs JW, Mendez F. Solid fraction measurement using equation-based cooling curve analysis. Scripta Materialia. 2008;58:699-702.
15 Fan Z. Semisolid metal processing. International Materials Reviews. 2002;47:49-85.
16 Zhang Y, Wu G, Liu W, Zhang L, Pang S, Ding W. Effects of processing parameters on microstructure of semi-solid slurry of AZ91D magnesium alloy prepared by gas bubbling. Transactions of Nonferrous Metals Society of China. 2015;25:2181-2187.
17 Mehr NF, Aashuri H. The effects of annular electromagnetic stirring parameters on microstructure evolution of rheocast AZ91 magnesium alloy. Journal of Materials Research and Technology. 2019;8:2300-2308.
18 Reisi M, Niroumand B. Growth of primary particles during secondary cooling of a rheocast alloy. Journal of Alloys and Compounds. 2009;475:643-647.
19 Flemings MC. Coarsening in solidification processing. Materials Transactions. 2005;46(5):895-900.
20 Janz A, Gröbner J, Schmid-Fetzer R. Thermodynamics and Constitution of Mg-Al-Ca-Sr-Mn Alloys: Part II. Procedure for Multicomponent Key Sample Selection and Application to the Mg-Al-Ca-Sr and Mg-Al-Ca-Sr-Mn Systems. Journal of Phase Equilibria and Diffusion. 2008;30(2):157-175.
21 Wang, C, Mei, H, Li, R. Microstructure evolution and grain coarsening behaviour during partial remelting of cyclic extrusion compression formed AZ61 magnesium alloy. Acta Metallurgica Sinica. 2013;26(2):149-156

22 Chen Y, Zhang L, Liu W, Wu G, Ding W. Preparation of Mg–Nd–Zn–(Zr) alloys semisolid slurry by electromagnetic stirring. Materials & Design. 2016b;95:398-409.

23 Chen T, Jiang X, Huang H, Ma Y, Li Y, Hao, Y. Semisolid microstructure of AZ91D magnesium alloy refined by MgCO3. Inter Metalcast 2. 2012;6:43-54.


Submetido em:
06/05/2021

Aceito em:
24/09/2022

621553b0a953952dd151baa2 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections