Comportamento microestrutural e de fluência do Inconel 718 após tratamento térmico de duplo envelhecimento
Creep and microstructural behavior of Inconel 718 after double aging heat treatment
Fabrícia Assis Resende Gonçalves, Renata Jesuina Takahashi, Danieli Aparecida Pereira Reis
Resumo
Inconel 718 é uma liga à base de níquel que é principalmente utilizada em aplicações de alta temperatura devido às propriedades mecânicas e à tolerância a condições severas de trabalho. As ligas Inconel podem ter suas propriedades mecânicas melhoradas com a aplicação de tratamentos térmicos pela precipitação de fases endurecedoras. Neste trabalho objetivou-se estudar do comportamento mecânico e microestrutural da superliga Inconel 718 após ensaio de fluência. Comparou-se os resultados da liga sob as condições homegeneizada (como fornecida) e após tratamento térmico de duplo envelhecimento composto pelas etapas de solubilização (1095 °C durante 1 hora) e tratamento térmico (955 °C/1 h seguido por 720 °C/8 h e 620 °C/8 h). Os ensaios de fluência foram realizados no modo de carga constante de 625 MPa e a temperatura em 650, 675 e 700 °C. Os corpos de prova de fluência foram avaliados pelas técnicas de caracterização de difratometria de raios X, microscopia eletrônica de varredura e análise de dureza. Os resultados obtidos indicaram que as amostras que sofreram o tratamento térmico de duplo envelhecimento apresentaram maior resistência mecânica devido, possivelmente, a precipitação de fases endurecedoras como a fase γ’ (Ni3 Al) e fase γ” (Ni3 Nb) formadas durante o tratamento térmico da liga. Além disso, o ganho de resistência foi comprovado pelo aumento dos valores da dureza e pelo aumento no tempo de fratura dos ensaios de fluência.
Palavras-chave
Abstract
Inconel 718 is a nickel-based alloy that is mainly used in high-temperature applications due to its mechanical properties and tolerance to severe work environments. Inconel alloys can be their mechanical properties significantly improved with the execution of heat treatments to precipitate hardening phases. This work aimed to study the mechanical and microstructural behavior of the Inconel 718 superalloy after creep test. The results of the alloy were compared under homogenized conditions (as received) and after heat treatment of double aging composed by solubilization (1095 °C for 1 hour) and heat treatment (955 °C/1 h followed by 720 °C/8 h and 620 °C/8 h). The creep tests were executed in in the stress range of 625 MPa in a constant load mode at 650, 675 and 700 °C. The creep specimens were evaluated using X-ray diffraction, scanning electron microscopy and hardness analysis techniques. The results indicated that the samples of heat treated showed greater mechanical resistance, possibly due to the precipitation of hardening phases such as the γ’ (Ni3 Al) and γ” (Ni3 Nb), phases formed during the double aging heat treatment. In addition, the strength gain was proven by the increase in hardness and the increase in fracture time of creep tests.
Keywords
Referências
1 Evans RW, Wilshire B. Introduction to creep. London: Springer Berlin Heidelberg; 1993.
2 Galizoni BB, Couto AA, Reis DAP. Heat treatments effects on nickel-based superalloy inconel 713C. Metals. 2019;9(1):47.
3 De Oliveira MM, Couto AA, Almeida GFC, Reis DAP, De Lima NB, Baldan R. Mechanical behavior of inconel 625 at elevated temperatures. Metals. 2019;9(3):301.
4 Maj P, Zdunek J, Gizynski M, Mizera J, Kurzydlowski KJ. Statistical analysis of the Portevin-Le Chatelier effect in Inconel 718 at high temperature. Materials Science and Engineering A. 2014;619:158-164.
5 Martinolli K, Sugahara T, Reis DAP, de Moura C No, Hirschmann AC, Couto AA. Evaluation of Inconel 718 creep behavior. Defect and Diffusion Forum. 2012;326-328:525-529.
6 Sugahara T, Martinolli K, Reis DAP, Moura C No, Couto AA, Piorino F No, Barboza MJR. Creep behavior of the inconel 718 superalloy. Defect and Diffusion Forum. 2012;326-328:509-514.
7 Sims CT, Stoloff NS, Hagel WC. Superalloys II high temperature materials for aerospace and industrial power. New York, 1987.
8 Caliari FR, Candioto KCG, Couto AA, Nunes CÂ, Reis DAP. Effect of double aging heat treatment on the shortterm creep behavior of the Inconel 718. Journal of Materials Engineering and Performance. 2016;25(6):2307-2317.
9 Collier JP, Wong SH, Tien JK, Phillips JC, Tein JK. The effect of varying AI, Ti, and Nb content on the phase stability of INCONEL 718. Metallurgical Transactions A, 1988;19:1657-1666.
10 Alam T, Chaturvedi M, Ringer SP, Cairney JM. Precipitation and clustering in the early stages of ageing in Inconel 718. Materials Science and Engineering A. 2010;527(29-30):7770-7774.
11 You X, Tan Y, Shi S, Yang J-M. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy. Materials Science and Engineering A. 2017;689(2):257-268.
12 Caliari FR, Candioto KCG, Reis DAP, Couto AA, De Moura C No, Nunes CA. Study of the mechanical behavior of an inconel 718 aged superalloy submitted to hot tensile tests. SAE Technical Papers; 2011;1-9.
13 ASTM International. ASTM E139-06 - Standard Test Methods for Conducting Creep, Creep-Rupture, and StressRupture Tests of Metallic Materials. West Conshohocken, PA: ASTM International; 2006.
14 Kuo CM, Yang YT, Bor HY, Wei CN, Tai CC. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Materials Science and Engineering A. 2009;510-511:289-294.
15 Feng Y, Pan Z, Liang SY. Temperature prediction in Inconel 718 milling with microstructure evolution. International Journal of Advanced Manufacturing Technology. 2018;95(9-12):4607-4621.
16 Decker RF. The evolution of wrought age-hardenable superalloys. JOM. 2006;58(9):32-36.
17 Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Science and Technology. 1999;3(8):513-523.
18 Smith GD, Patel SJ. The role of niobium in wrought precipitation-hardened nickel-base alloys. In: Proceedings of the International Symposium on Superalloy Var. Derivatives; 2005; USA. USA: American Welding Society; 2005. p.135-154.
19 Yeh AC, Lu KW, Kuo CM, Bor HY, Wei CN. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Materials Science and Engineering A. 2011;530(1):525-529.
20 Kraus W, Nolze G. Powder Cell - A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996;29(3):301-303.
21 Garofalo F, Butrymowicz DB. Fundamentals of creep and creep-rupture in metals. Physics Today. 1966;19(5):100-102.
22 Liu WC, Yao M, Chen ZL, Wang SG. Niobium segregation in Inconel 718. Journal of Materials Science. 1999;34(11):2583-2586.
23 Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718. Journal of Alloys and Compounds. 2000;306(1-2):277-284.
24 Caliari FR. Avaliação do comportamento em fluência da superliga Inconel 718 após duplo envelhecimento [dissertação]. São José dos Campos: ITA; 2012.
25 Whitmore L, Ahmadi MR, Guetaz L, Leitner H, Povoden-Karadeniz E, Stockinger M, et al. The microstructure of heat-treated nickel-based superalloy 718Plus. Materials Science and Engineering A. 2014;610:39-45.
26 Donachie MJ, Donachie SJ. Superalloys: a technical guide. 2nd ed. West Conshohocken, PA: ASTM International; 2002.
27 Yadav PC, Sahu S, Subramaniam A, Shekhar S. Effect of heat-treatment on microstructural evolution and mechanical behaviour of severely deformed Inconel 718. Materials Science and Engineering A. 2018;715:295-306.
28 Candioto KCG, Caliari FR, Reis DAP, Couto AA, Nunes CA. Characterization of the superalloy Inconel 718 after double aging heat treatment. Mechanical and Materials Engineering of Modern Structure and Component Design. 2015;70:293-300.
Submetido em:
17/06/2021
Aceito em:
21/09/2021