Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222628
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original – Special issue Tribute to Dr. Wilson Luiz Guesser

Gear fatigue of austempered ductile iron (ADI): an overview of numerical studies at UTFPR

Roberto Luís de Assumpção, Marco Antônio Luersen, Carlos Henrique da Silva

Downloads: 2
Views: 785

Abstract

ADIs are very versatile materials and can provide high performance in situations involving fatigue and wear. To understand the effect of graphite nodules on fatigue strength of ADIs, an interesting way of studying are the numerical analyzes through the Finite Element Method (FEM). UTFPR in partnership with TUPY S.A., especially under the supervision of Prof. Dr. Wilson L. Guesser, has carried out several studies via FEM in order to generate enough interesting knowledge, both for the foundry company and for the end user of ADI. From the results of these studies, it was found that, in general, although smaller graphite nodules have a slight tendency to nucleate cracks more quickly, their characteristics of relieving stresses and generating a branched mesh of interconnected cracks, which absorb energy at the crack tips, makes ADI with small nodules becomes a very competitive material in gear manufacturing

Keywords

Austempered ductil iron (ADI); Finite element method (FEM); Fatigue; Gear

Referências

1 Aranzabal J, Serramoglia G, Goria CA, Rousière D. Development of a mixed (ferritic-ausferritic) ductile iron for automotive suspension parts. International Journal of Cast Metals Research. 2003;16(1-3):185-190.

2 Guesser WL, Guedes LC. Desenvolvimentos recentes em ferros fundidos aplicados à indústria automobilística. In: Seminário da Associação de Engenharia Automotiva – AEA; 1997; São Paulo. São Paulo: AEA; 1997 [cited 2021 Aug 20]. Available at: https://www.tupy.com.br/downloads/guesser/desenv_ferros_fund.pdf

3 Guesser WL. Propriedades mecânicas dos ferros fundidos. São Paulo: Blucher; 2009.

4 Blackmore PA, Harding RA. The effects of metallurgical process variables on the properties of austempered ductile irons. Journal of Heat Treating. 1984;3(4):310-325.

5 Guedes LC, Guesser WL, Duran PV, Santos SBA. Utilização de ferros fundidos nodulares bainíticos na fabricação de engrenagens. Metalurgia ABM. 1986;42:237.

6 Tun T, Twin KT. Optimizing the microstructure and mechanical properties of austempered ductile iron for automobile differential gear. Journal of Metals, Materials and Minerals. 2008;12:199-205.

7 Gorla C, Conrado E, Rosa F. Contact and bending fatigue behavior of austempered ductile iron gears. Proceedings of the Institution of Mechanical Engineers, Part C. 2017;232:998-1008.

8 Zammit A, Bonnici M, Mhaede M, Wan R, Wagner L. Shot peening of austempered ductile iron gears. Surface Engineering. 2017;33(9):679-686.

9 Concli F. Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior. Procedia Structural Integrity. 2018;8:14-23.

10 Pedro DI, Dommarco RC. Rolling contact fatigue resistance of Carbidic Austempered Ductile Iron (CADI). Wear. 2019;418-419:94-101.

11 Guesser WL, Koda F, Martinez JAB, Da Silva CH. Austempered ductile iron for gears. Warrendale: SAE International; 2012. p. 1-10. (SAE Technical Paper; no. 36) [cited 2021 Aug 20]. Available at: https://www.tupy.com.br/downloads/guesser/adi-engrenagens.pdf

12 Martinez JA. Comparação da resistência ao desgaste por fadiga de contato de engrenagens fabricadas em aço AISI4140 e ferro fundido nodular austemperado [dissertation]. Curitiba: Universidade Tecnológica Federal do Paraná; 2011.

13 Koda F. Estudo da fadiga de contato em engrenagens cilíndricas de dentes retos [dissertation]. Curitiba: Universidade Tecnológica Federal do Paraná; 2009.

14 Yan W, Pun CL, Wua Z. Some issues on nanoindentation method to measure the elastic modulus of particles in composites. Composites. Part B, Engineering. 2011;42(8):2093-2097.

15 Reisdorfer DB, Gequelin J. Análise das tensões de Contato em Engrenagens utilizando os métodos analítico e numérico [trabalho de conclusão de curso]. Curitiba: Universidade Tecnológica Federal do Paraná; 2008.

16 Gans LHA, Guesser WL, Luersen MA, Silva CH. Numerical analysis of the influence of graphite nodule size on the pitting resistance of austempered ductile iron gears. Advanced Materials Research. 2015;1120-1121:763-772.

17 Quadros PMS, Betim VT, Ferreira APCS, Da Silva CH. Analysis of the relation between the flexural stress and geometrical variations in spur gears using modified Lewis’ equation and numerical methods. Revista Internacional de Pesquisa em Engenharia. 2016 [cited 2021 Aug 20];2:16-35. Available at: https://periodicos.unb.br/index.php/ripe/article/view/21797

18 Bru LBW. Uso do método dos elementos finitos no estudo das tensões de flexão em engrenagens de ferro fundido [trabalho de conclusão de curso]. Curitiba: Universidade Tecnológica Federal do Paraná; 2015 [cited 2021 Aug 20]. Available at: http://repositorio.utfpr.edu.br/jspui/bitstream/1/10348/2/CT_DAMEC_2016_2_30.pdf

19 Lazzaron J. Análise numérica do crescimento de trinca sob influência de nódulos de grafita submetida à flexão presente na raiz de dentes de engrenagem [trabalho de conclusão de curso]. Curitiba: Universidade Tecnologia Federal do Paraná; 2016 [cited 2021 Aug 20]. Available at: http://repositorio.utfpr.edu.br/jspui/bitstream/1/10490/1/CT_DAMEC_2016_2s_12.pdf

20 Suguinoshita G, Luersen MA, Silva CH. Influência das características dos nódulos no comportamento de trincas em matriz de ferro fundido. In: Anais do 70° Congresso Anual da ABM; 2015; Rio de Janeiro. São Paulo: ABM; 2015. p. 426-435 [cited 2021 Aug 20]. Available at: https://abmproceedings.com.br/ptbr/article/influencia-dascaracteristicas-dos-nodulos-no-comportamento-de-trincas-em-matriz-de-ferro-fundido

21 Suguinoshita G, Da Silva CH, Luersen MA. A finite element study of the influence of graphite nodule characteristics on a subsurface crack in a ductile cast iron matrix under a contact load. Computer Modeling in Engineering & Sciences. 2018;117(1):59-71.

22 Lazzaron J, Luersen MA, Silva CH. A finite element study of the Influence of graphite nodules size on subsurface contact stresses of Austempered Ductile Iron gears. In: Proceedings of the 24th ABCM International Congress of Mechanical Engineering; COBEM´17; 2017; Curitiba, PR, Brazil. Rio de Janeiro: ABCM; 2017.

23 Quadros PMS, Ferreira APCS, Silva CH. Numerical simulation for crack propagation in gear teeth using the extended finite element method. In: Proceedings of the 25th ABCM International Congress of Mechanical Engineering; COBEM’19; 2019; Uberlândia, MG, Brazil. Rio de Janeiro: ABCM; 2019.

24 França GVZ. Efeito numérico bidimensional de propagação de trincas em ferro fundido nodular austemperado (ADI) [dissertação]. Curitiba: Universidade Tecnológica Federal do Paraná; 2020 [cited 2021 Aug 20]. Available at: http://repositorio.utfpr.edu.br/jspui/bitstream/1/4731/1/CT_PPGEM_M_Franca%2c_Gustavo_von_Zeska_de_2019.pdf

25 França GVZ, Luersen MA, Da Silva CH. Bidimensional numerical study of crack propagation on austempered ductile iron. In: Proceedings of the XLI Ibero-Latin-American Congress in Computational Methods in Engineering; 2020. Belo Horizonte: ABMEC; 2020.

26 Greno GL, Otegui JL, Boeri RE. Mechanisms of fatigue crack growth in ADI. International Journal of Fatigue. 1999;21(1):35-43.

27 Johnson KL. Contact mechanics. Cambridge: Cambridge University Press; 1987.


Submetido em:
20/08/2021

Aceito em:
15/01/2022

628cd1fda95395745637c163 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections