Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222637
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Tratamento térmico para desfosfatização de monazita e recuperação dos elementos das terras raras

Thermal treatment for monazite defostatization and rare earth recovery

Ana Carolina Santos de Souza, Luiz Rogério Pinho de Andrade Lima

Downloads: 6
Views: 762

Resumo

O Brasil tem a segunda maior reserva de monazita, que é um dos três principais minerais contendo elementos das terras raras. Neste estudo foi utilizado um concentrado de monazita, oriundo da ocorrência de minerais pesados nas faixas costeiras dos estados da Bahia e do Espírito Santos. Foi avaliada também a melhor forma de análise das soluções aquosas ricas em terras raras por ICP-OES. Neste trabalho as etapas usadas para obter uma solução aquosa rica em terras raras oriundos do concentrado de monazita envolveram as seguintes etapas: adição de NaOH ao concentrado, aquecimento a temperatura de 400 o C por 3 horas, lavagem com água e posterior lixiviação do rejeito com HCl. Foram realizadas caracterizações químicas e mineralógicas nos produtos deste processo e os resultados indicaram que o concentrado inicial é rico em terras raras leves, o produto da fusão alcalina é composto predominantemente por hidróxidos de terras raras e livre de NaOH. O rejeito da lixiviação ácida mostrou-se rico em zirconita, indicando que a dissolução dos hidróxidos de terras raras formados na etapa anterior foi completa. As interferências espectrais nas raias dos elementos predominantes foram consideradas nas análises por ICP-OES usando padrões individuais destes elementos. Foram definidas as seguintes raias para os elementos predominantes: Ce 456,236 nm, Th 283,730 nm, La 384,902 nm, Nd 430,058 nm, Pr 390,844 nm, e Sm 428.079 nm. A lixívia obtida após a lixiviação ácida dos hidróxidos de terras raras foi analisada por este método e as concentrações dos elementos predominantes (em g/L) foram: Ce 32,81, Th 14,76, La 8,58, Nd 3,35, Pr 3,02 e Sm 1,28.

Palavras-chave

Terras raras; Monazita; ICP-OES; Lixiviação

Abstract

Brazil has the second largest reserve of monazite, which is one of the three main minerals bearing of rare earth elements. In this study, a monazite concentrate, derived from the occurrence of heavy minerals in the coastal strips of the states of Bahia and Espírito Santos, was used. The best way to analyze aqueous solutions rich in rare earths by ICP-OES was also evaluated. In this work, the steps used to obtain an aqueous solution rich in rare earths from the monazite concentrate involved the following steps: addition of NaOH to the concentrate, heating at 400 ºC for 3 hours, washing with water and subsequent leaching of the remaining solid phase with HCl. Chemical and mineralogical characterizations were accomplished on the products of this process and the results indicated that the initial concentrate is rich in light rare earths, the alkaline fusion product is predominantly composed of rare earth hydroxides and free of NaOH. The acid leaching tailings showed to be rich in zirconite, indicating that the dissolution of the rare earth hydroxides formed in the previous step was complete. Spectral interferences in the lines of the predominant elements were considered in the ICP-OES analysis using individual patterns of these elements. The following lines were defined for the predominant elements: Ce 456.236 nm, Th 283.730 nm, La 384.902 nm, Nd 430.058 nm, Pr 390.844 nm, and Sm 428,079 nm. The leachate obtained after acid leaching of rare earth hydroxides was analyzed by this method and the concentrations of the predominant elements (in g/L) were: Ce 32.81, Th 14.76, La 8.58, Nd 3.35, Pr 3.02, and Sm 1.28

Keywords

Rare earth; Monazite; ICO-OES; Leaching.

Referências

1 Apergis E, Apergis N. The role of rare earth prices in renewable energy consumption: the actual driver for a renewable energy world. Energy Economics. 2017;62:33-42.

2 Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers. 2019;10(4):1285-1303.

3 Jordens A, Cheng YP, Waters KE. A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering. 2013;41:97-114.

4 Kumari A, Panda R, Jha MK, Kumar JR, Lee JY. Process development to recover rare earth metals from monazite mineral: a review. Minerals Engineering. 2015;79:102-115.

5 Krishnamurthy N, Gupta CK. Extractive metallurgy of rare earths. 2nd ed. Boca Raton: CRC Press; 2016.

6 Abdel-Rehim AM. An innovative method for processing Egyptian monazite. Hydrometallurgy. 2002;67(1-3):9-17.

7 Panda R, Kumari A, Jha MK, Hait J, Kumar V, Kumar JR, et al. Leaching of rare earth metals from Korean monazite. Journal of Industrial and Engineering Chemistry. 2014;20(4):2035-2042.

8 Merritt RR. High temperature methods for processing monazite: I. Reaction with calcium chloride and calcium carbonate. Journal of the Less Common Metals. 1990;166(2):197-210.

9 Merritt RR. High temperature methods for processing monazite: II. Reaction with sodium carbonate. Journal of the Less Common Metals. 1990;166(2):211-219.

10 Kumari A, Panda R, Jha MK, Lee JY, Kumar JR, Kumar V. Thermal treatment for the separation of phosphate and recovery of rare earth metals (REMs) from Korean monazite. Journal of Industrial and Engineering Chemistry. 2015;21:696-703.

11 Nölte J. ICP emission spectrometry: a practical guide. 2nd ed. Weinheim: Wiley-VCH; 2021. 288 p.

12 Zawisza B, Pytlakowska K, Feist B, Polowniak M, Kita A, Sitko R. Determination of rare earth elements by spectroscopic techniques: a review. Journal of Analytical Atomic Spectrometry. 2011;26(12):2373-2390.

13 Amaral CDB, Machado RC, Barros JAVA, Virgilio A, Schiavo D, Nogueira ARA, et al. Determination of rare earth elements in geological samples using the Agilent SVDV ICP-OES: application note. New York: Agilent Technologies, Inc.; 2016.

14 Amaral CDB, Machado RC, Barros JAVA, Virgilio A, Schiavo D, Nogueira ARA, et al. Determination of rare earth elements in geological and agricultural samples by ICP-OES. Spectroscopy. 2017;32:32-36.

15 Huang B, Wang X, Yang P, Ying H, Gu S, Zhang Z, et al. An atlas of high resolution spectra of rare earth elements for inductively coupled plasma atomic emission spectroscopy. Cambridge: The Royal Society of Chemistry; 2000.
 


Submetido em:
08/09/2021

Aceito em:
09/08/2022

632caa08a9539552a4456d64 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections