Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222638
Tecnologia em Metalurgia, Materiais e Mineração
Comunicação Breve

Nanopartículas de prata: síntese, atividade antibacteriana e comparativo com um desinfetante comum

Silver nanoparticles: synthesis, antibacterial activity and comparison with a common disinfectant

Ronaldo Silveira, Elidio Angioletto, Sabrina Arcaro, Thauan Gomes

Downloads: 4
Views: 866

Resumo

O surgimento de microrganismos com resistência a antibióticos e/ou desinfetantes de uso comercial representa uma ameaça à saúde humana. Assim, o desenvolvimento de alternativas que possam ser utilizadas no combate a tais microrganismos é de grande importância. Neste cenário, destaca-se a ação de nanopartículas de prata (AgNPs) para eliminação microbiológica. As AgNPs impedem o desenvolvimento da resistência microbiana devido aos múltiplos mecanismos conhecidos pelos quais elimina os microrganismos. No entanto, o uso de AgNPs ainda é limitado devido à dificuldade de síntese, estabilização e custo de produção. Por essa razão o uso de desinfetantes comuns, tais como os fabricados com base em sais quaternários de amônio, tem sido preferido. Neste estudo, uma síntese rápida de uma solução de AgNPs foi desenvolvida por co-precipitação utilizando citrato de sódio como agente redutor. As nanopartículas obtidas foram caracterizadas por espectroscopia no ultravioleta visível (UV-vis) e espalhamento dinâmico da luz (EDL). Os espectros obtidos mostraram pico de absorbância no comprimento de onda de 420 nm. Isso caracteriza nanopartículas com baixa agregação em suspensão. A análise de EDL indicou nanopartículas com tamanho médio de 40 nm. A solução de AgNPs obtida teve atividade antimicrobiana analisada pela formação de halo de inibição de crescimento utilizando cepas das bactérias Escherichia coli e Staphylococcus aureus. Um comparativo com um desinfetante a base de quarternário de amônio mostrou que a solução de AgNPs é uma alternativa potencial para a desinfecção de superfícies.

Palavras-chave

Nanopartículas de prata; Eliminação microbiana; Biocida; Desinfetante.

Abstract

The emergence of microorganisms with resistance to antibiotics and/or commercially used disinfectants represents a threat to human health. Thus, the development of alternatives to be used against microorganisms is of great importance. In this scenario, the action of silver nanoparticles (AgNPs) for microbiological elimination is highlighted. AgNPs prevent the development of microbial resistance due to multiple known mechanisms capable of eliminating microorganisms. However, the use of AgNPs is still limited due to the difficulty of synthesis, stabilization and production cost. For this reason, the use of common disinfectants, such as those made from quaternary ammonium salts, has been preferred. In this study, a rapid synthesis of an AgNPs solution was developed by co-precipitation using sodium citrate as a reducing agent. The nanoparticles obtained were characterized by ultraviolet visible spectroscopy (UV-vis) and dynamic light scattering (DLS). The spectra obtained showed peak absorbance at a wavelength of 420 nm. This characterizes nanoparticles with low aggregation in suspension. DLS analysis indicated nanoparticles with an average size of 40 nm. The AgNPs solution obtained had antimicrobial activity analyzed by the formation of a growth inhibition halo using Escherichia coli and Staphylococcus aureus bacterial strains. A comparison with a quaternary ammonium-based disinfectant showed that the AgNPs solution is a potential alternative for surface disinfection.

Keywords

Silver nanoparticles; Microbial elimination; Biocide; Disinfectant.

Referências

1 Ning P, Liu CC, Wang YJ, Li XZ, Ranjithkumar R, Gan ZH, et al. Facile synthesis, antibacterial mechanisms and cytocompatibility of Ag–MnFe2O4 magnetic nanoparticles. Ceramics International. 2020 [acesso em 10 set. 2021];46(12):20105-20115. Disponível em: https://www.sciencedirect.com/science/article/pii/S0272884220313730

2 Souza HM, Savi GD, Gomes T, Cardoso WA, Cargnin M, Angioletto E. Ozone application in COVID-19 triage areas and its efficiency of microbial decontamination. Ozone Science and Engineering. 2021;43(4):306-316. http://dx.doi.org/10.1080/01919512.2021.1908880.

3 Navarro Gallón SM, Alpaslan E, Wang M, Larese-Casanova P, Londoño ME, Atehortúa L, et al. Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Materials Science and Engineering C. 2019 [acesso em 10 set. 2021];99:685-695. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493118308130.

4 Dasaradhudu Y, Arunachalam Srinivasan M. Synthesis and characterization of silver nano particles using co-precipitation method. Materials Today: Proceedings. 2020 [acesso em 10 set. 2021];33:720–723. Disponível em: https://www.sciencedirect.com/science/article/pii/S221478532034476X

5 Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C. Synthesis and study of silver nanoparticles. Journal of Chemical Education. 2007;84(2):322. http://dx.doi.org/10.1021/ed084p322.

6 Lee C-F, You P-Y, Lin Y-C, Hsu T-L, Cheng P-Y, Wu Y-X, et al. Exploring the stability of gold nanoparticles by experimenting with adsorption interactions of nanomaterials in an undergraduate lab. Journal of Chemical Education. 2015;92(6):1066-1070. http://dx.doi.org/10.1021/ed500819z.

7 Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: synthesis, investigation techniques, and properties. Advances in Colloid and Interface Science. 2020 [acesso em 10 set. 2021];284:102246. Disponível em: https://www.sciencedirect.com/science/article/pii/S0001868620302943

8 Delgado-Beleño Y, Martinez-Nuñez CE, Cortez-Valadez M, Flores-López NS, Flores-Acosta M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Materials Research Bulletin. 2018 [acesso em 10 set. 2021];99:385-392. Disponível em: https://www.sciencedirect.com/science/article/pii/S0025540817324388

9 Aref MS, Salem SS. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology. 2020 [acesso em 10 set. 2021];27:101689. Disponível em: https://www.sciencedirect.com/science/article/pii/S187881812030445X

10 Ji H, Zhou S, Fu Y, Wang Y, Mi J, Lu T, et al. Size-controllable preparation and antibacterial mechanism of thermoresponsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. Materials Science and Engineering C. 2020 [acesso em 10 set. 2021];110:110735. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493119327766

11 Ghosh T, Chattopadhyay A, Mandal AC, Pramanik S, Kuiri PK. Optical, structural, and antibacterial properties of biosynthesized Ag nanoparticles at room temperature using Azadirachta indica leaf extract. Zhongguo Wuli Xuekan. 2020 [acesso em 10 set. 2021];68:835-848. Disponível em: https://www.sciencedirect.com/science/article/pii/S0577907320302884


Submetido em:
10/09/2021

Aceito em:
10/02/2022

62cdbb99a953957c9f51fcb4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections