Reuse of printed circuit boards substrate in the production of mortars
Reaproveitamento do substrato de placas de circuito impresso na produção de argamassas
José Ricardo Ferrari, Rosana Vilarim da Silva, Desílvia Machado Louzada, Iara Mendonça Tinti
Abstract
Recycling electronic waste is one of the main environmental challenges faced by society today. In this sense, the purpose of this study is to evaluate the effect of using the residue of printed circuit boards (PCB) as a substitute for sand in mortars. The boards were taken from discarded electronic equipment and, to obtain the granular material, the boards, free of their components, were crushed. The residue obtained was sieved and separated into four granulometric ranges: # 1.2 mm; # 0.6 mm; # 0.3 mm and # 0.15 mm. Mortars were produced with partial replacement of 5% and 10% of the sand with the equivalent volume of residue in each of the size ranges, in addition to a reference mortar, without residue. For the characterization of the mortars, compressive strength, water absorption, percentage of voids and density tests were performed, in addition to analysis by scanning electron microscopy and environmental, leaching and solubilization, analyses. In general, the properties of the mortars, with the incorporation of the PCB residue, were not affected by the introduction of the residue, making its use feasible. However, as it is classified as non-inert in environmental analysis it is necessary to control its final disposal.
Keywords
Resumo
A reciclagem do lixo eletrônico é um dos principais desafios ambientais enfrentados pela sociedade atualmente. Encontrar novas possibilidades de uso para esses resíduos pode auxiliar a solucionar alguns problemas. Neste sentido, a proposta deste trabalho é avaliar o efeito do uso do resíduo de placas de circuito impresso (PCB), como substituto da areia em argamassas. As placas foram retiradas de equipamentos eletrônicos descartados e, para a obtenção do material granular, as placas, livres de seus componentes, foram trituradas. O resíduo obtido foi peneirado e separado em quatro faixas granulométricas: # 1.2 mm; # 0.6 mm; # 0.3 mm e # 0.15 mm. Foram produzidas argamassas com substituição parcial de 5% e 10% da areia pelo volume equivalente do resíduo de cada uma das faixas granulométricas, além de uma argamassa de referência. Para a caracterização das argamassas foram realizados ensaios de resistência à compressão, absorção de água, índice de vazios e densidade, além de análise por microscopia eletrônica de varredura e análises ambientais, de lixiviação e solubilização. As propriedades das argamassas com o resíduo de placa de circuito impresso não foram afetadas pela introdução do resíduo, viabilizando a utilização do mesmo. No entanto, por ser classificado como não inerte nas análises ambientais, segundo a norma NBR 10004:2004, é necessário controle na sua disposição final.
Palavras-chave
Referências
1 Forti V, Baldé CP, Kuehr R, Bel G. The Global E-waste Monitor 2020: quantities, flows, and the circular economy potential. 2020 [cited 2021 Apr 1]. Available at: https://ewastemonitor.info/gem-2020/
2 Ongondo FO, William ID, Cherrett TJ. How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management (New York, N.Y.). 2011;31(4):714-730. http://dx.doi.org/10.1016/j.wasman.2010.10.023.
3 Filin S, Kalinina I, Maslennikov V, Ibraimova S, Velikorossov V, Chaikovsky A. Management of electronic and electrical equipment waste collection in municipalities. In: E3S Web of Conferences 247. France: EDP Sciences; 2021. p. 01023. http://dx.doi.org/10.1051/e3sconf/202124701023.
4 Tanskanen P. Management and recycling of electronic waste. Acta Materialia. 2013;61(3):1001-1011. http://dx.doi.org/10.1016/j.actamat.2012.11.005.
5 Zhitong Y, Tung-Chai L, Sarker PK, Weiping S, Jie L, Weihong W, et al. Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: a critical review. Renewable & Sustainable Energy Reviews. 2018;81:595-604. http://dx.doi.org/10.1016/j.rser.2017.08.027.
6 Vazquez YV, Barbosa SE. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization. Waste Management (New York, N.Y.). 2016;53:196-203. http://dx.doi.org/10.1016/j.wasman.2016.04.022.
7 Liu J, Yang T, Hu Z, Feng G. The development of unimolecular conjugated polymeric micelles for the highly selective detection and recovery of gold from electronic waste. New Journal of Chemistry. 2019;43(30):11811-11815. http://dx.doi.org/10.1039/C9NJ02077B.
8 Sun Z, Cao H, Xiao Y, Sietsma J, Jin W, Agterhuis H, et al. Toward sustainability for recovery of critical metals from electronic waste: the hydrochemistry processes. ACS Sustainable Chemistry & Engineering. 2017;5(1):21-40. http://dx.doi.org/10.1021/acssuschemeng.6b00841.
9 Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – a review. Waste Management (New York, N.Y.). 2015;45:258-271. http://dx.doi.org/10.1016/j.wasman.2015.01.017.
10 Shen M, Ge J, Lam J, Zhu M, Li J, Zeng L. Occurrence of two novel triazine-based flame retardants in an E-waste recycling area in South China: implication for human exposure. The Science of the Total Environment. 2019;683:249-257. http://dx.doi.org/10.1016/j.scitotenv.2019.05.264.
11 He K, Sun Z, Hu Y, Zeng X, Yu Z, Cheng H. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations. Environmental Science and Pollution Research International. 2017;24(10):9387-9398. http://dx.doi.org/10.1007/s11356-017-8548-x.
12 Martínez AL, Barrera GM, Díaz CE, Córdoba LI, Núñez FU, Hernández DJ. Recycled polycarbonate from electronic waste and its use in concrete: Effect of irradiation. Construction & Building Materials. 2019;201:778-785. http://dx.doi.org/10.1016/j.conbuildmat.2018.12.147.
13 Siddiqui MN, Redhwi H, Antonakou EV, Achilias DS. Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment. Journal of Analytical and Applied Pyrolysis. 2018;132:123-133. http://dx.doi.org/10.1016/j.jaap.2018.03.008.
14 Sommerhuber PF, Wang T, Krause A. Wood–plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard. Journal of Cleaner Production. 2016;121:176-185. http://dx.doi.org/10.1016/j.jclepro.2016.02.036.
15 Hadi P, Xu M, Lin CS, Hui CW, McKay G. Waste printed circuit board recycling techniques and product utilization. Journal of Hazardous Materials. 2015;283:234-243. http://dx.doi.org/10.1016/j.jhazmat.2014.09.032.
16 Medeiros NM. Caracterização e separação física de placas de circuito impresso de computadores obsoletos [thesis]. Natal: Universidade Federal do Rio Grande do Norte; 2015 [cited 2021 Oct 29]. Available at: https://repositorio.ufrn.br/jspui/handle/123456789/20607.
17 Associação Brasileira de Normas Técnicas. ABNT NBR 10004: resíduos sólidos – classificação. Rio de Janeiro: ABNT; 2004.
18 Alagusankareswari K, Sandeep Kumar S, Vignesh KB, Abdul Hameed Niyas K. An experimental study on e-waste concrete. Indian Journal of Science and Technology. 2016;9(2):1-5. http://dx.doi.org/10.17485/ijst/2016/v9i2/86345.
19 Premur V, Vučinić AA, Vujević D, Bedeković G. The possibility for environmental friendly recycling of printed circuit boards. Journal of Sustainable Development of Energy, Water and Environment Systems. 2016;4(1):14-22. http://dx.doi.org/10.13044/j.sdewes.2016.04.0002.
20 Gomathi Nagajothi P, Kala F. Compressive strength of concrete incorporated with e-fiber waste. International Journal of Emerging Technology and Advanced Engineering. 2014;4(4):23-27. http://dx.doi.org/10.13140/RG.2.2.13814.91207.
21 Huang HL, Hwang CL, Peng SS, Wang EH, Chen CT, Chiang CC. Assessing the adequacy of concrete mixes utilizing PCB powders. Journal of Testing and Evaluation. 2014;42(1):135-145. http://dx.doi.org/10.1520/JTE20120218.
22 Associação Brasileira de Normas Técnicas. ABNT NBR NM 45: agregados - determinação da massa unitária e do volume de vazios. Rio de Janeiro: ABNT; 2006.
23 Associação Brasileira de Normas Técnicas. ABNT NBR 7215: Cimento Portland - determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro: ABNT; 2019.
24 Moncea AM, Badanoiu A, Georgescu M, Stoleriu S. Cementitious composites with glass waste from recycling of cathode ray tubes. Materials and Structures. 2013;46(12):2135-2144. http://dx.doi.org/10.1617/s11527-013-0041-5.
25 Associação Brasileira de Normas Técnicas. ABNT NBR 9778: argamassa e concreto endurecidos - determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro: ABNT; 2009.
26 Mastali M, Dalvand A, Sattarifard A. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fiber reinforced polymers. Journal of Cleaner Production. 2016;124:312-324. http://dx.doi.org/10.1016/j.jclepro.2016.02.148.
27 Associação Brasileira de Normas Técnicas. ABNT NBR 10005: procedimento para obtenção de extrato lixiviado de resíduos sólido. Rio de Janeiro: ABNT; 2004. 16p.
Submetido em:
29/10/2021
Aceito em:
30/06/2022