Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222668
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original – Special issue Tribute to Dr. Wilson Luiz Guesser

Influence of Si content on the machinability of ductile iron

Tiago Silvério Guimarães Xavier, Leonardo Rosa Ribeiro da Silva, Wilson Luiz Guesser, Alisson Rocha Machado

Downloads: 4
Views: 500

Abstract

The development of new chemical compositions of cast iron contributes to increasing the competitiveness of foundry and manufacturing companies that always seek to optimize the properties of these materials. Previous works detected machinability variation along the cross-section of nodular cast irons (DI) bars produced by continuous casting due to the variation of the microstructure and mechanical properties presented, with decreasing machinability from the periphery to the core. This variation imposes complications, as it implies different ideal (or optimal) cutting conditions along the crosssection of the round bars. Assays with ductile irons (DI) with varying silicon content showed that the reduction in silicon decreased the microhardness of ferrite and increased the percentage of pearlite in the matrix, thus generating a decrease in the ductility of the material. Thus, this work investigates the effect of silicon content on machinability variation along the cross-section of nodular cast iron bars in the turning process. Three different types of nodular cast iron alloys were used, differing by the amount of silicon in the composition. Material characterization and machining tests were carried out in three regions: the periphery, the intermediate region, and the core. The hardness, metallography, size of graphite nodules, and amount per region were analyzed in the characterization tests and compared to the evolution of wear and tool life machining force and surface roughness. The addition of different percentages of silicon did not avoid the differences in behavior between the three regions of the same material, but it changed the behavior of the three alloys studied. The silicon content affects the material’s microstructure, which, together with the cooling rate, favors the differentiation of graphite nodules in different sizes, arrangements, and spacing. This differentiation contributes to the difference in the material’s behavior in the machining between the regions along the cross-section. Strengthening in the core region was a trend in all three alloys. There was a statistical difference in roughness between the regions of the material. Cast iron with medium silicon content showed lower machining force and roughness values but close to those of high silicon. As with high-silicon cast iron, the forces remained at a more stabilized level, without significant variations between regions of the material.

Keywords

Nodular cast iron; Machinability; Silicon content; Turning; Tool life; Machining force; Surface finish.

Referências

1 Guesser WL. Propriedades mecânicas dos ferros fundidos. São Paulo: Editora Blucher; 2009.

2 Pacha-Gołębiowska H, Piekarska W. Mechanical properties of ductile cast iron relation to the charge elements. IOP Conference Series. Materials Science and Engineering. 2021;1199(1):012022.

3 Gorka A, Doru MS, Beñat B, Edurne A, Ramon S. Effect of tellurium on the nucleation process of spheroidal graphite in cast iron. Journal of Materials Research and Technology. 2022;19:4451-4462.

4 Tewary U, Paul D, Mehtani HK, Bhagavath S, Alankar A, Mohapatra G, et al. The origin of graphite morphology in cast iron. Acta Materialia. 2022;226:117660.

5 TUPY. Perfis de fundição contínua. FUCO Manual Técnico. Joinville: Indústria de Fundição Tupy; 1998.

6 Angelo ECA Jr. Caracterização de ferro fundido nodular obtido por fundição contínua [dissertação]. Curitiba: Programa de Pós-graduação em Engenharia Mecânica, Pontifícia Universidade Católica do Paraná; 2003.

7 Sousa JAG. Influência da microestrutura na usinabilidade do ferro fundido nodular FE45012 em diferentes bitolas, obtidos por fundição contínua [tese]. Uberlândia: Programa de Pós-graduação em Engenharia Mecânica, Universidade Federal de Uberlândia; 2014.

8 Stan I, Anca D, Stan S, Riposan I. Solidification pattern of si-alloyed, inoculated ductile cast irons, evaluated by thermal analysis. Metals. 2021;11(5):846.

9 Vilela F. Efeito de algumas variáveis de processo na obtenção de ferro fundido nodular ferrítico no estado bruto de fundição [mestrado]. São Caetano do Sul: Centro Universitário do Instituto Mauá de Tecnologia; 2010.

10 Arshad W, Mehmood A, Hashmi M, Rauf O. The effect of increasing silicon on mechanical properties of ductile iron. Journal of Physics: Conference Series. 2018;1082:1082.

11 Martins MC. Análise da usinabilidade na furação de ferros fundidos nodulares produzidos por fundição contínua. [dissertação]. Florianópolis: Programa de Pós-graduação em Engenharia Mecânica, Centro Tecnológico, Universidade Federal de Santa Catarina; 2018.

12 TUPY. Catálogo Técnico – CT 0614 – FUCO Perfis Fundidos. [cited 2020 Oct 20]. 2012. Available at: http://www.tupy.com.br

13 Sousa JAG. Influência da microestrutura na usinabilidade do ferro fundido nodular FE45012 em diferentes bitolas, obtidos por fundição contínua [tese]. Uberlândia: Programa de Pós-graduação em Engenharia Mecânica, Universidade Federal de Uberlândia; 2014.

14 PACE Technologies. Introduction to metallography [cited 2020 Oct 20]. 2012. Available at: https://www.metallographic.com/Brochures/Met-manual-2b.pdf

15 Tan E, Ögel B. Influence of heat treatment on the mechanical properties of AA6066 alloy. Turkish Journal of Engineering and Environmental Sciences. 2007;31(1):53-60.

16 Ferraresi D. Fundamentos da usinagem dos materiais, São Paulo: Ed Edgard Blucher Ltda; 1977. 751 p.

17 Machado AR, Abrão AM, Coelho RT, Silva MB. Teoria da usinagem dos materiais. 3. ed. São Paulo: Editora Edgard Blucher; 2015.

18 Trent EM, Wright PK. Metal cuttin. 4th ed. UK: Ed. Butterworths; 2000.

19 Benedetti M, Fontanari V, Lusuardi D. Effect of graphite morphology on the fatigue and fracture resistance of ferritic ductile cast iron. Engineering Fracture Mechanics. 2019;206:427-441.

20 Parhad P, Dakre V, Likhite A, Bhatt J. The impact of cutting speed and depth of cut on cutting force during turning of austempered ductile iron. Materials Today: Proceedings. 2019;19:663-669.

21 Aslantas K, Ucun I. The performance of ceramic and cermet cutting tools for the machining of austempered ductile iron. International Journal of Advanced Manufacturing Technology. 2009;41(7-8):642-650.

22 Şeker U, Hasirci H. Evaluation of machinability of austempered ductile irons in terms of cutting forces and surface quality. Journal of Materials Processing Technology. 2006;173(3):260-268.

23 Ghani AK, Choudhury IA, Husni. Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool. Journal of Materials Processing Technology. 2002;127(1):17-22.

24 Chang GW, Wang H, Yue X, Zhang H. Research of the feeding speed adopting cored-wire method to spheroidize ductile iron melt. Acta Metallurgica Sinica. English Letters. 2008;21(5):362-368.

25 Souza DCS, Silva ER. Contribuição ao estudo da influência dos parâmetros de core e da geometria da ferramenta na rugosidade superficial de peças torneadas. Goiás: URV; 2008.

26 Werlang A Fo. Análise da usinabilidade de ferros fundidos nodulares austemperados como função dos tratamentos térmicos e microestruturas [tese]. Porto Alegre: Programa de Pós-graduação em Engenharia e Tecnologia de Materiais, Pontifícia Universidade Católica do Rio Grande do Sul; 2015.

27 Bhople N, Patil N, Mastud S. The experimental investigations into dry turning of austempered ductile iron. Procedia Manufacturing. 2018;20:227-232.


Submetido em:
25/11/2021

Aceito em:
16/09/2022

635a9d48a953954fd57e2383 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections