Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222717
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Efeito da temperatura de austenitização intercrítica sobre a cinética de transformação martensítica e evolução microestrutural de um aço API-OCTG grau K55

Effect of intercritical austenitizing temperature on the kinetics of martensitic transformation and microstructural evolution in a API-OCTG grade K55 steel

Arthur Cançado Schuttenberg, Verônica Stela da Silva Lima, José Márcio da Rocha, Geraldo Lúcio de Faria

Downloads: 2
Views: 713

Resumo

Aços API-5CT grau K55 são especificados para tubos de revestimento de poços de exploração de óleo e gás. Eles podem ser fabricados por laminação sem costura, seguida de têmpera e revenimento (processo clássico). No entanto, diversos segmentos industriais têm apontado a utilização de microestruturas bifásicas (ferrita-martensita) como uma alternativa para melhorar a relação resistência mecânica-tenacidade de diversos produtos. Considerando a possibilidade de obtenção de um tubo bifásico por meio da aplicação de têmpera após austenitização intercrítica, este estudo pioneiro investigou o efeito da temperatura de austenitização intercrítica sobre as frações de fases e a cinética de transformação martensítica de um aço API-5CT grau K55. Concluiu-se que, para este aço, a faixa de temperatura de austenitização intercrítica está compreendida entre 750 °C e 820 °C. Verificou-se um aumento significativo nas temperaturas M s e M f , assim como da fração de martensita com a elevação da temperatura de austenitização. Em relação à cinética de transformação martensítica, concluiu-se que o efeito autocatalítico no início da transformação é mais atuante quanto maior a temperatura de austenitização. Modelos de previsibilidade que descrevem a evolução das temperaturas M s e M f , assim como da cinética de transformação martensítica, em função da condição de austenitização, foram aplicados com sucesso.

Palavras-chave

Aço API grau K55; Temperatura de austenitização intercrítica; Transformação martensítica; Evolução microestrutural

Keywords

API grade K55 steel; Intercritical austenitizing temperature; Martensitic transformation; Microstructural evolution

Referências

1 Godefroid LB, Sena BM, Trindade VB. Evaluation of microstructure and mechanical properties of seamless steel pipes API 5L type obtained by different processes of heat treatments. Materials Research. 2017;20(2):514-522.

2 Godefroid LB, Cândido LC, Toffolo RB, Barbosa LH. Microstructure and mechanical properties of two API steels for iron ore pipelines. Materials Research. 2014;17(Suppl 1):114-120.

3 Shin SY, Woo KJ, Hwang B, Kim S, Lee S. Fracture-toughness analysis in transition-temperature region of three american petroleum institute X70 and X80 pipeline steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2009;40(4):867-876.

4 Gray JM, Siciliano F. High strength microalloyed linepipe: half a century of evolution. Houston: Microalloyed Steel Institute; 2009.

5 Moraes NRDC, Garcia JM, Júnior ESB, Cruz RB, Brandão LP. Experimental and analytical investigation on the effect of heat treatment parameters on the mechanical properties of an API 5L X65 steel. Materials Research. 2021;24(2):e20200503.

6. American Petroleum Institute. API-5L: specification for line pipe. 46. ed. Washington, DC: API; 2018.

7. American Petroleum Institute. API-5CT: specification for casing and tubing. 10. ed. Washington, DC: API; 2018.

8 Shin SY, Woo KJ, Hwang B, Kim S, Lee S. Fracture-toughness analysis in transition-temperature region of three american petroleum institute X70 and X80 pipeline steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2009;40(4):867-876.

9 Urband BE, Morey S. High strength sour service C110 casing. In: Proceedings of SPE/IADC Drilling Conference; 1999; Amsterdam, Netherlands. Texas: SPE; 1999. SPE-52843-MS.

10 Bernard F, Urband BE, Morey S, Bradley B, Legay F, Marchebois H, et al. Latest enhancements in high strength sour service tubulars. In: Proceedings of SPE/IADC Drilling Conference; 2009; Amsterdam, Netherlands. Texas: SPE; 2009. SPE-119888-MS.

11 El-Raghy SM, El-Sayed AH, Tayeb NA. OCTG premature failures due to metallurgical variance and differential electrochemical behavior of exterior and interior walls. International Journal of Oil, Gas and Coal Engineering. 2014;2(3):28-35.

12 Cirimello PG, Otegui JL, Carfi G, Morris W. Failure and integrity analysis of casings used for oil well drilling. Engineering Failure Analysis. 2017;75:1-14.

13 Pimenta NAB, Magalhães CHXM, Campos PHK, Faria GL. Efeitos de tratamentos térmicos de têmpera com austenitização intercrítica na microestrutura, partição de elementos e temperatura Ms em um aço TRIP780. Tecnologica em Metalurgia, Materiais e Mineração. 2021;18:e2440.

14 Nyyssönen T, Peura P, Moor ED, Williamson D, Kuokkala V. Crystallography and mechanical properties of intercritically annealed quench and partitioned high-aluminum steel. Materials Characterization. 2019;148:71-80.

15 Han Q, Kang Y, Zhao X, Stanford N, Cai M. Suppression of Ms temperature by carbon partitioning from carbon- supersaturated ferrite to metastable austenite during intercritical annealing. Materials & Design. 2013;51:409-414.

16 Toji Y, Matsuda H, Herbig M, Choi PP, Raabe D. Atomic-scale analysis of carbon partitioning between martensiteand austenite by atom probe tomography and correlative transmission electron microscopy. Acta Materialia. 2014;65:215-228.

17 Ding R, Tang D, Zhao A, Dong R, Cheng J, Meng X. Effect of intercritical temperature on quenching and partitioning steels originated from martensitic pre-microstructure. Journal of Materials Research. 2014;29(21):2525- 2533.

18 Lee S, De Cooman BC. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2013;44(11):5018-5024.

19 Souza SS, Moreira PS, Faria GL. Austenitizing temperature and cooling rate effects on the martensitic transformation in a microalloyed-steel. Materials Research. 2020;23(1):e20190570.

20 Gao Q, Wang C, Qu F, Wang Y, Qiao Z. Martensite transformation kinetics in 9Cr-1.7W-0.4Mo-Co ferrite steel. Journal of Alloys and Compounds. 2014;610:322-330.

21 van Bohemen SMC, Sietsma J. Kinetics of martensite formation in plain carbon steels: critical assessment of possible influence of austenite grain boundaries and autocatalysis. Materials Science and Technology. 2014;30(9):1024-1033.

22 Celada-casero C, Sietsma J, Santofimia MJ. The role of the austenite grain size in the martensitic transformation in low carbon steels. Materials & Design. 2019;167:107625.

23 Rodrigues K, Faria GL. Characterization and prediction of continuous cooling transformations in rail steels. Materials Research. 2021;24(5):e20200519.

24 Faria GL, Paula JMA, Lima MSF. Characterization of phase transformation and microstructural changes in an API 5CT L80 steel grade during Ni alloy laser cladding. Materials Research. 2018;21(5):e20180294.

25 American Society for Testing and Materials. ASTM E3-11: standard guide for preparation of metallographic specimens. West Conshohocken: ASTM International; 2017.

26 American Society for Testing and Materials. ASTM E1245-03: standard practice for determining the inclusion or second-phase constituent content of metals by automatic image analysis. West Conshohocken: ASTM International; 2016.

27 American Society for Testing and Materials. ASTM E562-19: standard test method for determining volume fraction by systematic manual point count. West Conshohocken: ASTM International; 2020.

28 American Society for Testing and Materials. ASTM E92-17: standard test methods for vickers hardness and knoop hardness of metallic materials. West Conshohocken: ASTM International; 2017.

29 Rodrigues KF, Mourão GMM, Faria GL. Kinetics of isothermal phase transformations in premium and standard rail steels. Steel Research International. 2020;92(2):2000306.

30 Faria GL, Godefroid LB, Nunes IP, Lacerda JC. Effect of martensite volume fraction on the mechanical behavior of an UNS S41003 dual-phase stainless steel. Materials Science and Engineering A. 2020;797:140208.

31 Ghaheri A, Shafyei A, Honarmand M. Effects of inter-critical temperatures on martensite morphology, volume fraction and mechanical properties of dual-phase steels obtained from direct and continuous annealing cycles. Materials & Design. 2014;62:305-319.

32 Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica. 1959;7(1):59-60.

33 Lee SJ, Van Tyne CJ. A kinetics model for martensite transformation inplain carbon and low-alloyed steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2012;43(2):422-427.


Submetido em:
02/04/2022

Aceito em:
06/02/2023

63fcc5dea953953bc5223222 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections