Anodização porosa de titânio em eletrólito livre de HF
Porous anodizing titanium in HF free electrolyte
Lucas Theisen, Sandra Raquel Kunst, Ana Carolina Viero Bianchin, Fernando Dal Pont Morisso, Cláudia Trindade Oliveira
Resumo
Os fatores críticos que determinam a aplicação do titânio e suas ligas para implantes biomédicos são suas propriedades mecânicas e químicas, seguidas pela excelente resistência à corrosão e biocompatibilidade. Com isso, a anodização tem sido usada para favorecer a formação de superfícies porosas que melhoram o processo de osseointegração do titânio, buscando propriedades que possam estimular o crescimento do osso neoformado. No entanto, esse processo utiliza eletrólitos à base de ácido fluorídrico (HF), o qual é nocivo para a saúde do operador. O objetivo deste estudo é obter superfície porosa de titânio em eletrólitos livres de F- . Desta forma, amostras de titânio foram anodizadas em eletrólitos de ácido sulfúrico com e sem adição peróxido de hidrogênio, em diferentes concentrações (1/2, 1 e 2 M H2 O2 ) a fim de obter superfície porosa de óxido de titânio. O crescimento dos óxidos foi avaliado por meio de transientes de anodização e as amostras obtidas foram analisadas ao MEV. As amostras apresentaram a formação de óxidos contendo poros, de dimensões nanométricas. Portanto, este estudo mostra uma alternativa a formação de porosidade, sem uso de eletrólito a base de HF, com potencial aplicação em biomateriais.
Palavras-chave
Abstract
The critical factors that determine the application of titanium and its alloys for biomedical implants are its mechanical and chemical properties, followed by excellent corrosion resistance and biocompatibility. Thus, anodization has been used to favor the formation of porous surfaces that improve the osseointegration process in titanium, seeking properties that can stimulate the growth of newly formed bone. However, this process uses electrolytes based on hydrofluoric acid (HF), which is harmful to the health of the patient receiving the prosthesis. The aim of this study was to obtain a porous surface of titanium in F-free electrolytes. In this way, titanium samples were anodized in sulfuric acid electrolytes with and without hydrogen peroxide addition, in varying concentrations, in order to obtain a porous surface of titanium oxide. The growth of oxides was evaluated by means of anodizing transients and the samples obtained were analyzed by SEM. The samples showed the formation of porous oxides of nanometric dimensions. Therefore, this study shows an alternative for the formation of pores, without the use of HF-based electrolyte, with potential application in biomaterials.
Keywords
Referências
1 Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced. 2003;4(5):445-454.
2 Albrektsson P, Chang B, Cho L, Johansson C, Sul Y, Wennerberg P. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. The International Journal of Oral & Maxillofacial Implants. 2005;20(3):349-359.
3 Mansur HS, Oréfice RL, Pereira MM. Biomateriais: fundamentos e aplicações. 1a ed. Rio de Janeiro: Guanabara Koogan; 2012.
4 Abdullah HZ, Sorrell CC. Preparation and characterisation of TiO2 thick films fabricated by anodic oxidation. Materials Science Forum. 2007;561-565:2159-2162.
5 Berger S, Roy P, Schmuki P. TiO2 nanotubes: synthesis and applications. Angewandte Chemie. 2011;13:2904-2939.
6 Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science. 2007;11(1-2):3-18.
7 Asoh H, Nakatani M, Ono S. Fabrication of thick nanoporous oxide films on stainless steel via DC anodization and subsequent biofunctionalization. Surface and Coatings Technology. 2016;307:441-451.
8 Variola F, Brunski JB, Orsini G, Oliveira PT, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 2011;3(2):335-353.
9 American Society for Testing and Materials – ASTM. ASTM F0067-13R17: standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). West Conshohocken: ASTM; 2017.
10 American Society for Testing and Materials – ASTM. ASTM B0265-13: standard specification for titanium and titanium alloy strip, sheet, and plate. West Conshohocken: ASTM; 2013.
11 Bianchin ACV, Maldaner GR, Fuhr LT, Beltrami LVR, Malfatti CF, Rieder ES, et al. A model for the formation of niobium structures by anodization. Materials Research. 2017;20(4):1010-1023.
12 Bianchin ACV, Kunst SR, Mueller LT, Ferreira JZ, Morisso FDP, Carone CLP, et al. Influence of the anodization process on zamak 5 corrosion resistance. Materials Research. 2020;23(4):e20190601.
13 Barreto AS, Fuhr LT, Scheffel LF, Morisso FDP, Carone CLP, Kunst SR, et al. Niobium porous anodizing with glycerin addition. Matéria. 2020;25(2):1-11.
14 Sikora MS, Rosario AV, Pereira EC, Paiva-Santos CO. Influence of the morphology and microstructure on the photocatalytic properties of titanium oxide films obtained by sparking anodization in H3 PO4 . Electrochimica Acta. 2011;56(9):3122-3127.
15 Young L. Anodic oxide films. 1st ed. London: Academic Press; 1961.
16 Traid HD, Vera ML, Ares AE, Litter MI. Advances on the synthesis of porous TiO2 coatings by anodic spark oxidation: photocatalytic reduction of Cr(VI). Materials Chemistry and Physics. 2017;191:106-113.
17 Xiao F, Tsuru K, Hayakawa S, Osaka A. In vitro apatite deposition on titania film derived from chemical treatment of Ti substrates with an oxysulfate solution containing hydrogen peroxide at low temperature. Thin Solid Films. 2003;441(1-2):271-276.
18 Zaniolo KM. Crescimento anódico e caracterização de óxidos coloridos de titânio em eletrólitos alternativos [dissertação]. São Carlos: Universidade Federal de São Carlos; 2014.
19 Gomes MAB, Onofre S, Juanto S, Bulhões LO. Anodization of niobium in sulphuric acid media. Journal of Applied Electrochemistry. 1991;21(11):1023-1026.
20 Fuhr LT, Moura ABD, Carone CLP, Morisso FDP, Scheffel LF, Kunst SR, et a. Colored anodizing of titanium with pyroligneous solutions of black wattle. Matéria. 2020;25(2):e-12658.
21 Marcolin P, Longhi M, Caio L, Zini LP, Beltrami LVR, Silva JC, et al. Obtaining niobium oxides in acetic acid with addition of HF. Tecnologica em Metalurgia, Materiais e Mineração. 2018;15(1):35-42.
22 Bonatto F. Síntese e caracterização de nanoestruturas formadas pela anodização de titânio [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2009.
23 Sul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behavior on titanium in acid and alkaline electrolytes. Medical Engineering & Physics. 2001;23(5):329-346.
24 Doll PW, Wolf M, Weichert M, Ahrens R, Guber AE, Spindler B. Nanostructuring of titanium by anodic oxidation with sulfuric and hydrofluoric acid. Current Directions in Biomedical Engineering. 2018;4(1):641-644.
25 Xing J, Xia Z, Hu J, Zhang Y, Zhong L. Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corrosion Science. 2013;75:212-219.
26 Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25(18):4087-4103.
27 Mizukoshi Y, Ohtsu N, Masahashi N. Structural and characteristic variation of anodic oxide on pure Ti with anodization duration. Applied Surface Science. 2013;283:1018-1023.
28 Shin DH, Shokuhfar T, Choi CK, Lee S-H, Friedrich C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology. 2011;22(31):315704.
29 Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF. Advancing dental implant surface technology--from micronto nanotopography. Biomaterials. 2008;29(28):3822-3835.
30 Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. 2007;23(7):844-854.
Submetido em:
21/06/2022
Aceito em:
31/08/2022