“Second phases” in steel: a review of the concept, origin, and their relevance for properties
André Luiz Vasconcellos da Costa e Silva
Abstract
Steels are multiphase alloys with an increasingly complex constitution. This complexity of steel microstructures has been recognized since the birth of steel physical metallurgy. Non-metallic inclusions have also been very early recognized as relevant to the understanding of steel behavior. With the advances in precipitation hardening and grain size control, many precipitate phases gained importance in steel design. Around 1950-70 the term “second phases” was coined as an all-encompassing definition that would cover non-metallic inclusions as well as fine precipitates such as nitrides and carbonitrides even in steels that already had a multi-phase constitution. While this classification may be practical in some cases, we argue that it hinders the proper understanding of the origin and effects of particles in steel and unduly complicates the understanding of the phenomena in which they take part. In this work, we briefly review the origin of the second phase particle concept and discuss the critical properties of particles with respect to their influence on steel behavior. Through several examples, we propose that size and volume fraction are the main variables in evaluating how particles affect steels. While chemical composition is key to understanding the origin of the particles, we suggest that these variables are, together with interface properties, the most relevant to understand the effect of particles on steel behavior.
Keywords
Referências
1 Chezeau N. De la forge au laboratoire: naissance de la métallurgie physique, 1860-1914. Rennes: Presses Universitaires de Rennes; 2004. (Collection Carnot).
2 Rosenhain W. Metallurgy: an introduction to the study of physical metallurgy. New York: D. Van Nostrand Company; 1914.
3 Costa e Silva A. Non-metallic inclusions in steels: origin and control. Journal of Materials Research and Technology. 2018;7(3):283-299. http://dx.doi.org/10.1016/j.jmrt.2018.04.003.
4 Costa e Silva A. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. Journal of Materials Research and Technology. 2019;8(2):2408-2422. http://dx.doi.org/10.1016/j.jmrt.2019.01.009.
5 Sauveur A. Metallography and heat treatment of iron and steel. 2nd ed. Cambridge: The University Press; 1916.
6 Howe HM. The metallurgy of steel. New York: The Scientific Publishing Co.; 1890.
7 Fraenkel W, Scheuer E. Das Duraluminproblem. Naturwissenschaften. 1924;(8):5.
8 Merica PD. The age-hardening of metals. Transactions AIME. 1932;99(13):284.
9 Jeffries Z, Cleveland O. Grain growth phenomena in metals. Transactions AIME. 1917;56:2064-2073.
10 Howe H. On grain growth. Transactions AIME. 1916;56:2111-2117.
11 Edelson BI, Baldwin WM Jr. The effect of second phases on the mechanical properties of alloys. Cleveland: Case Institute of Technology; 1959. (Technical Report; no. 2) [cited 2022 May 19]. Available at: http://www.dtic.mil/docs/citations/AD0218572
12 Gladman T, Holmes B, McIvor I. Effects of second-phase particles on strength, toughness, and ductility. In: Proceedings of the ISI Conference on Effect of Second-Phase Particles on the Mechanical Properties of Steel; 1971; Scarborough. London: Iron and Steel Institute; 1971. p. 68-78.
13 British Steel Corporation. Effect of second-phase particles on the mechanical properties of steel: proceedings of a conference organised by the Corporate Laboratories of the British Steel Corporation and the Iron and Steel Institute, held at the Royal Hotel, Scarborough, on 24-25 March 1971. London: Iron and Steel Institute; 1972. 214 p.
14 Decker RF. Alloy design, using second phases. Metallurgical Transactions. 1973;4(11):2495-2518. http://dx.doi.org/10.1007/BF02644252.
15 Bandi WR. Second phases in steel. Science. 1977;196(4286):136-142. http://dx.doi.org/10.1126/science.196.4286.136.
16 Ngo TD. Introduction to composite materials. In: Ngo TD, editor. Composite and nanocomposite materials: from knowledge to industrial application. London: IntechOpen; 2020. http://dx.doi.org/10.5772/intechopen.91285
17 Chawla KK, Chawla KK. Composite materials: science and engineering. 3rd ed. New York: Springer; 2012. http://dx.doi.org/10.1007/978-0-387-74365-3.
18 Pomey G, Trentini B. Quelques considérations sur la propreté des aciers. Revue de Metallurgie Paris. 1971;68(10):603-624. http://dx.doi.org/10.1051/metal/197168100603.
19 Colpaert H, Costa e Silva A. Metallography of steels: interpretation of structure and the effects of processing. Materials Park: ASM International; 2018.
20 Maloney JL, Garrison Jr MW. The effect of sulfide type on the fracture behavior of HY180 steel. Acta Materialia. 2005;53(2):533-551. http://dx.doi.org/10.1016/j.actamat.2004.09.041.
21 Iorio LE, Garrison Jr MW. Effects of gettering sulfur as CrS or MnS on void generation behavior in ultra-high strength steel. Scripta Materialia. 2002;46(12):863-868. http://dx.doi.org/10.1016/S1359-6462(02)00067-2.
22 Garrison Jr MW, Wojcieszynski AL. A discussion of the spacing of inclusions in the volume and of the spacing of inclusion nucleated voids on fracture surfaces of steels. Materials Science and Engineering A. 2009;505(1–2):52-61. http://dx.doi.org/10.1016/j.msea.2008.11.065.
23 Gladman T, Fourlaris G, Talafi-Noghani M. Grain refinement of steel by oxidic second phase particles. Materials Science and Technology. 1999;15(12):1414-1424. http://dx.doi.org/10.1179/026708399101505400.
24 Gladman T, Dulieu D. Grain-size control in steels. Metal Science. 1974;8(1):167-176. http://dx.doi.org/10.1179/msc.1974.8.1.167.
25 Gladman T. On the theory of the effect of precipitate particles on grain growth in metals. Proceedings - Royal Society. Mathematical, Physical and Engineering Sciences. 1966;294(1438):298-309. http://dx.doi.org/10.1098/rspa.1966.0208.
26 Palmiere EJ, Garcia CI, DeArdo AJ. The influence of niobium supersaturation in austenite on the static recrystallization behavior of low carbon microalloyed steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 1996;27(4):951-960. http://dx.doi.org/10.1007/BF02649763.
27 Deardo AJ. Niobium in modern steels. International Materials Reviews. 2003;48(6):371-402. http://dx.doi.org/10.1179/095066003225008833.
28 Babu SS, David SA. Inclusion formation and microstructure evolution in low alloy steel welds. ISIJ International. 2002;42(12):1344-1353. http://dx.doi.org/10.2355/isijinternational.42.1344.
29 Fox AG, Brothers DG. The role of titanium in the non-metallic inclusions which nucleate acicular ferrite in the submerged arc weld (SAW) fusion zone of navy HY-100 steel. Scripta Metallurgica et Materialia. 1995;32(7):1061-1066. http://dx.doi.org/10.1016/0956-716X(95)00075-7.
30 Kiessling R. Clean steel: a debatable concept. Metal Science. 1980;14(4):161-172. http://dx.doi.org/10.1080/02670836.2020.12097372.
31 Kiessling R. Non-metallic inclusions in steels. London: The Iron and Steel Institute; 1968.
32 Spitzig WA. Effect of sulfides and sulfide morphology on anisotropy of tensile ductility and toughness of hot-rolled C-Mn steels. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1983;14(2):471-484. http://dx.doi.org/10.1007/BF02644224.
33 Murakami Y. Metal fatigue: effects of small defects and non-metallic inclusions. Kidlington: Elsevier Science; 2002.
34 Rocabois P, Pontoire JN, Lehmann J, Gaye H. Crystallization kinetics of Al2 O3 -CaO-SiO2 based oxide inclusions. Journal of Non-Crystalline Solids. 2001;282(1):98-109. http://dx.doi.org/10.1016/S0022-3093(01)00332-5.
35 Oshiro T, Ikeda T, Matsuyama H, Okushima S, Oki Y, Ibaraki N. Verbesserung der Dauerhaltbarkeit von Ventilfederdraht. Stahl und Eisen. 1989;10(21):1011-1015.
36 Stouvenot F, Gaye H, Gatellier C, Lehmann J. Secondary steelmaking slag treatment for inclusions control in semi-killed steels. In: Electric Furnace Conference Proceedings; 1994; Warrendale, PA. Warrendale: ISS; 1994. p. 423-428.
37 Costa e Silva A. Refino dos aços: fundamentos e aplicações. São Paulo. Blucher; 2022. (in print).
38 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength. International Journal of Fatigue. 1994;16(3):163-182. http://dx.doi.org/10.1016/0142-1123(94)90001-9.
39 Murakami Y, Matsunaga H, Abyazi A, Fukushima Y. Defect size dependence on threshold stress intensity for high-strength steel with internal hydrogen. Fatigue & Fracture of Engineering Materials & Structures. 2013;36(9):836-850. http://dx.doi.org/10.1111/ffe.12077.
40 Murakami Y, Toriyama T, Tsubota K, Furumura K. What happens to the fatigue limit of bearing steel without nonmetallic inclusions?: Fatigue strength of electron beam remelted super clean bearing steel. In: Hoo JJC, Green WB, editors. Bearing steels: into the 21st century, ASTM STP 1327. West Conshohocken: ASTM; 1998. p. 87-105.
41 Murakami Y, Toriyama T. Critical-review of the inclusion rating by Jis-G-0555 method and new inclusion rating based on statistics of extreme and its applications. Tetsu To Hagane. 1993;79(12):1380-1385. http://dx.doi.org/10.2355/tetsutohagane1955.79.12_1380.
42 Ashby MF, Blunt FJ, Bannister M. Flow characteristics of highly constrained metal wires. Acta Metallurgica. 1989;37(7):1847-1857. http://dx.doi.org/10.1016/0001-6160(89)90069-2.
43 Butler TW, Drucker DC. Yield strength and microstructural scale: a continuum study of pearlitic versus spheroidized steel. Journal of Applied Mechanics. 1973;40(3):780-784. http://dx.doi.org/10.1115/1.3423089.
44 Rosenfield AR, Hahn GT, Embury JD. Fracture of steels containing pearlite. Metallurgical Transactions. 1972;3(11):2797-2804. http://dx.doi.org/10.1007/BF02652845.
45 Tsuchida N, Ueji R, Inoue T. True stress-true strain relationship up to the plastic deformation limit in ferrite-pearlite steel at various temperatures. ISIJ International. 2022;62(2):361-367. http://dx.doi.org/10.2355/isijinternational. ISIJINT-2021-181.
46 Inoue T, Kinoshita S. Observations of ductile fracture processes and criteria of void initiation in spheroidized and ferrite/pearlite steels. Tetsu To Hagane. 1976;62(7):875-884. http://dx.doi.org/10.2355/tetsutohagane1955.62.7_875.
47 Inoue T, Kinoshita S. Strain partitioning and void formation in ferrite-pearlite steels deformed in tension. Tetsu To Hagane. 1976;62(1):90-99. http://dx.doi.org/10.2355/tetsutohagane1955.62.1_90.
48 Heibel S, Dettinger T, Nester W, Clausmeyer T, Tekkaya AE. Damage mechanisms and mechanical properties of high-strength multiphase steels. Materials. 2018;11(5):761. http://dx.doi.org/10.3390/ma11050761.
49 Uthaisangsuk V, Prahl U, Bleck W. Micromechanical modelling of damage behaviour of multiphase steels. Computational Materials Science. 2008;43(1):27-35. http://dx.doi.org/10.1016/j.commatsci.2007.07.035.
50 Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research. 2015;45(1):391-431. http://dx.doi.org/10.1146/annurev-matsci-070214-021103.
51 Marder AR. Deformation characteristics of dual-phase steels. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1982;13(1):85-92. http://dx.doi.org/10.1007/BF02642418.
52 Jamwal RS, Gokhale AM, Bhat SP. Quantitative fractographic analysis of variability in the tensile ductility of a high strength dual-phase steel. Metallography, Microstructure, and Analysis. 2013;2(1):30-34. http://dx.doi.org/10.1007/s13632-012-0051-7.
53 Le Roy G, Embury JD, Edwards G, Ashby MF. A model of ductile fracture based on the nucleation and growth of voids. Acta Metallurgica. 1981;29(8):1509-1522. http://dx.doi.org/10.1016/0001-6160(81)90185-1.
54 Poruks P, Yakubtsov I, Boyd JD. Martensite-ferrite interface strength in a low-carbon bainitic steel. Scripta Materialia. 2006;54(1):41-45. http://dx.doi.org/10.1016/j.scriptamat.2005.09.012.
55 Qiu H, Mori H, Enoki M, Kishi T. Evaluation of ductile fracture of structural steels by microvoid model. ISIJ International. 1999;39(4):358-364. http://dx.doi.org/10.2355/isijinternational.39.358.
56 Kwon D. Interfacial decohesion around spheroidal carbide particles. Scripta Metallurgica. 1988;22(7):1161-1164. http://dx.doi.org/10.1016/S0036-9748(88)80123-6.
57 Benzerga AA, Leblond JB, Needleman A, Tvergaard V. Ductile failure modeling. International Journal of Fracture. 2016;201(1):29-80. http://dx.doi.org/10.1007/s10704-016-0142-6.
58 Benzerga AA, Leblond JB. Ductile fracture by void growth to coalescence. Advances in Applied Mechanics. 2010;44:169-305. http://dx.doi.org/10.1016/S0065-2156(10)44003-X.
59 Davenport E, Bain E. The aging of steel. Transactions ASM. 1935;23:1047-1076.
60 Jeffries Z. Colorado paper - metallography of Tungsten (with discussion). Transaction AIME. 1919;60:588-656.
61 Smith CS. Grains, phases, and interfaces: an interpretation of microstructure. Richardson: AIME; 1948. (Technical Publication; no. 387).
62 Manohar PA, Ferry M, Chandra T. Five decades of the Zener equation. ISIJ International. 1998;38(9):913-924. http://dx.doi.org/10.2355/isijinternational.38.913.
63 Christian JW. The theory of transformations in metals and alloys. 3rd ed. Boston: Pergamon; 2002.
64 Rios PR, Fonseca GS. Grain boundary pinning by particles. Materials Science Forum. 2010;638-642:3907-3912. http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.3907.
65 Rios PR, Padilha AF. Transformações de Fase. São Paulo: Artliber; 2007.
66 Gladman T. Aluminum for grain size control. Heat Treatment of Metals. 1994;1(1):11-14.
67 Gladman T. Recrystallization and grain growth of multiphase and particle-containing alloys. In: Proceedings of the 1st International Risø Symposium; 1980; Risø. Roskilde: Risø National Laboratory; 1980. p. 183-190.
68 Takahashi M. Effect of manganese and sulfur on austenite grain size and recrystallized ferrite grain size after cold rolling of low carbon steel. Tetsu To Hagane. 1974;60(5):501-513. http://dx.doi.org/10.2355/tetsutohagane1955.60.5_501.
69 Cesar MGMM, Paolinelli SC, Alcântara FL, Cota AB. Effect of the low temperature annealing on primary and secondary structures and magnetic properties of Fe-3% Si. Materials Research. 2011;15(1):1-8. http://dx.doi.org/10.1590/S1516-14392011005000103.
70 Manohar PA, Dunne DP, Chandra T, Killmore CR. Grain growth predictions in microalloyed steels. ISIJ International. 1996;36(2):194-200. http://dx.doi.org/10.2355/isijinternational.36.194.
71 Gladman T, Senogles D. Grain refinement of low carbon structural steels by titanium oxide particles. In: Baker TN, editors. Titanium technology in microalloyed steels. London: Institute of Materials; 1997. p. 83.
72 Weeks RL. Grain control in steels by silica particles [thesis]. Leeds: University of Leeds; 1997.
73 Loder D, Michelic SK, Bernhard C. Acicular ferrite formation and its influencing factors: a review. Journal of Materials Science Research. 2016;6(1):24. http://dx.doi.org/10.5539/jmsr.v6n1p24.
74 Babu SS. The mechanism of acicular ferrite in weld deposits. Current Opinion in Solid State and Materials Science. 2004;8(3-4):267-278. http://dx.doi.org/10.1016/j.cossms.2004.10.001.
75 Lee C, Nambu S, Inoue J, Koseki T. Ferrite formation behaviors from B1 compounds in steels. ISIJ International. 2011;51(12):2036-2041. http://dx.doi.org/10.2355/isijinternational.51.2036.
76 Mizoguchi S. A study on segregation and oxide inclusions for the control of steel properties [thesis]. Tokyo: University of Tokyo; 1996.
77 Sarma DS, Karasev AV, Jönsson PG. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ International. 2009;49(7):1063-1074. http://dx.doi.org/10.2355/isijinternational.49.1063.
78 Inoue H, Koseki T. Solidification mechanism of austenitic stainless steels solidified with primary ferrite. Acta Materialia. 2017;124:430-436. http://dx.doi.org/10.1016/j.actamat.2016.11.030.
79 European Commission. Directorate-General for Research and Innovation. Grain size control in steel by means of dispersed non-metallic inclusions – GRAINCONT. Brussel: EU Publications Office; 2011. http://dx.doi.org/10.2777/88228.
80 Costa e Silva A. Challenges and opportunities in thermodynamic and kinetic modeling microalloyed HSLA steels using computational thermodynamics. Calphad. 2020;68:101720. http://dx.doi.org/10.1016/j.calphad.2019.101720.
81 Vervynckt S, Verbeken K, Thibaux P, Houbaert Y. Recrystallization-precipitation interaction during austenite hot deformation of a Nb microalloyed steel. Materials Science and Engineering A. 2011;528(16-17):5519-5528. http://dx.doi.org/10.1016/j.msea.2011.03.087.
82 Hornbogen E. Hundred years of precipitation hardening. Journal of Light Metals. 2001;1(2):127-132. http://dx.doi.org/10.1016/S1471-5317(01)00006-2.
83 Gladman T. Precipitation hardening in metals. Materials Science and Technology. 1999;15(1):30-36. http://dx.doi.org/10.1179/026708399773002782.
84 Ardell AJ. Precipitation hardening. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1985;16(12):2131-2165. http://dx.doi.org/10.1007/BF02670416.
85 Ashby MF, Shercliff H, Cebon D. Materials: engineering, science, processing and design. 4th ed. Kidlington: Butterworth-Heinemann; 2019. 631 p.
86 Gladman T, Dulieu D, McIvor ID. Structure-property relationships in high-strength microalloyed steel. In: Proceedings of the Microalloying ’75 International Symposium on High-Strength Low-Alloy Steels; 1976; New York. Washington, DC: Union Carbide Corp.; 1976. p. 32-55.
87 Escobar DP, Castro CSB, Borba EC, Oliveira AP, Camey K, Taiss E, et al. Correlation of the solidification path with as-cast microstructure and precipitation of Ti,Nb(C,N) on a high-temperature processed steel. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2018;49(8):3358-3372. http://dx.doi.org/10.1007/s11661-018-4717-x.
88 Santos AA, Murari FD, Avelar ARA Jr, Pereda B, Lopez Soria B. Evolução microestrutural de aço da classe de 700 MPa na laminação de tiras a quente. In: Anais do 55º Seminário de Laminação e Conformação de Metais; 2018; São Paulo. São Paulo: ABM; 2018. http://dx.doi.org/10.5151/1983-4764-31814.
89 Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ International. 2004;44(11):1945-1951. http://dx.doi.org/10.2355/isijinternational.44.1945.
90 Funakawa Y, Fujita T, Yamada K. Metallurgical features of Nanohiten and application to warm stamping. JFE Reports. 2013;(18):74-79.
Submetido em:
20/06/2022
Aceito em:
01/08/2022