Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222756
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original – Special Issue 75th ABM Annual Congress - PART I

Work hardening analysis in a lean duplex stainless Steel 2304 after low deformation by cold rolling

Davi Silva Alves, Daniella Gomes Rodrigues, Dagoberto Brandão Santos

Downloads: 1
Views: 466

Abstract

The deformation mechanism of lean duplex stainless steel (LDSS) is overly complex not only by their dual phase microstructure, but also due to metastable austenite, which can deform by different mechanisms and transform to martensite by strain. The purpose of this study was to investigate the mechanisms of deformation by tensile test on low deformed cold-rolled samples (4%-22%) of a 2304 LDSS. The microstructure was analyzed by X-ray diffraction, optical microscopy, electron backscattered diffraction and transmission electron microscopy. It was observed the formation of mechanical twinning, ε-martensite, and α’-martensite which evidenced the TRIP effect. The strain hardening rate was calculated and analyzed by Holomon and Crussard-Jaoul modeling together with instantaneous strain hardening exponent, and three operating mechanisms were observed: twinning, dislocations slipping, and strain induced martensite formation (SIM). Brass texture had compromised SIM transformation. The fractography analysis of tensile specimens showed quasi-cleavage occurrence, and dimples formation for this range of pre-deformation.

Keywords

Lean-duplex stainless steel; TRIP effect; Twinning; Strain-hardening; Stacking fault energy.

Referências

1 Zhao Y, Zhang W, Liu X, Liu Z, Wang G. Development of TRIP-aided lean duplex stainless steel by twin-roll strip casting and its deformation mechanism. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2016;47:6292-6303. http://dx.doi.org/10.1007/s11661-016-3771-5.

2 Liljas M, Johansson P, Liu H-P, Olsson C-OA. Development of a lean duplex stainless steel. Steel Research International. 2008;79:466-473. http://dx.doi.org/10.1002/srin.200806154.

3 Charles J. Duplex stainless steels, a review after DSS’07 held in Grado. Revue de metallurgie. 2008;105:155-171. http://dx.doi.org/10.1051/metal:2008028.

4 Pierce DT, Jiménez JA, Bentley J, Raabe D, Wittig JE. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe- Mn-Al-Si steels during tensile deformation. Acta Materialia. 2015;100:178-190. http://dx.doi.org/10.1016/j.actamat.2015.08.030.

5 Maria GGB, Rodrigues DG, Freitas ÉTF, Santos DB. ε-Martensite formation for low strains in a lean duplex stainless steel. Materials Letters. 2019;234:283-286. http://dx.doi.org/10.1016/j.matlet.2018.09.104.

6 Rodrigues DG, Maria GGB, Viana NAL, Santos DB. Effect of low cold- rolling strain on microstructure, texture, phase transformation, and mechanical properties of 2304 lean duplex stainless steel. Materials Characterization. 2019;150:138-149. http://dx.doi.org/10.1016/j.matchar.2019.02.011.

7 American Society for Testing and Materials. ASTM E8/E8M standard test methods for tension testing of metallic materials. West Conshohocken: ASTM; 2010. https://doi.org/10.1520/E0008

8 Lechartier A, Meyer N, Estevez R, Mantel M, Martin G, Parry G, et al. Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: role of deformation mechanisms, alloy chemistry and predeformation. Materialia. 2019;5:100190. http://dx.doi.org/10.1016/j.mtla.2018.100190.

9 Maria GGB, Pedroso CAD, Rodrigues DG, Santos DB. Strain-induced martensite and reverse transformation in 2304 lean duplex stainless steel and its influence on mechanical behavior. Steel Research International. 2019;90:1-11. http://dx.doi.org/10.1002/srin.201800437.

10 Choi JY, Ji JH, Hwang SW, Park KT. TRIP aided deformation of a near-Ni- free, Mn-N bearing duplex stainless steel. Materials Science and Engineering A. 2012;535:32-39. http://dx.doi.org/10.1016/j.msea.2011.12.037.

11 Park KT, Jin KG, Han SH, Hwang SW, Choi K, Lee CS. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition. Materials Science and Engineering A. 2010;527:3651-3661. http://dx.doi.org/10.1016/j.msea.2010.02.058.

12 Schramm RE, Reed RP. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1975;6:1345-1351. http://dx.doi.org/10.1007/BF02641927.

13 Rhodes CG, Thompson AW. The composition dependence of stacking fault energy in austenitic stainless steels. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1977;8:1901-1906. http://dx.doi.org/10.1007/bf02646563.

14 Olson GB, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1976;7:1897-1904. http://dx.doi.org/10.1007/BF02659822.

15 Talonen J, Hänninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Materialia. 2007;55:6108-6118. http://dx.doi.org/10.1016/j.actamat.2007.07.015.

16 Wright SI, Nowell MM, Field DP. A review of strain analysis using electron backscatter diffraction. Microscopy and Microanalysis. 2011;17:316-329. http://dx.doi.org/10.1017/S1431927611000055.

17 Gao Z, Li J, Chen Y, Wang Y. Effect of dual-phase structure on the microstructure and deformation inhomogeneity of 2507 duplex stainless steel. Ironmaking & Steelmaking. 2021;48:393-401. http://dx.doi.org/10.1080/03019233.2020.1794766.

18 Jia Q, Wang Y, Mei R, Chen L, Hao S, Zhang H, et al. The dependences of deformation temperature on the strainhardening characteristics and fracture behavior of Mn–N bearing lean duplex stainless steel. Materials Science and Engineering A. 2021;819:141440. http://dx.doi.org/10.1016/j.msea.2021.141440.

19 Stringfellow RG, Parks DM, Olson GB. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metallurgica et Materialia. 1992;40:1703-1716. http://dx.doi.org/10.1016/0956-7151(92)90114-T.

20 Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Materialia. 2011;59:4653-4664. http://dx.doi.org/10.1016/j.actamat.2011.04.011.

21 Choi JY, Ji JH, Hwang SW, Park KT. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition. Materials Science and Engineering A. 2011;528:6012-6019. http://dx.doi.org/10.1016/j.msea.2011.04.038.

22 Sandim MJR, Souza Filho IR, Mota CFGS, Zilnyk KD, Sandim HRZ. Microstructural and magnetic characterization of a lean duplex steel: strain- induced martensite formation and austenite reversion. Journal of Magnetism and Magnetic Materials. 2021;517. http://dx.doi.org/10.1016/j.jmmm.2020.167370.

23 Fargas G, Akdut N, Anglada M, Mateo A. Microstructural evolution during industrial rolling of a duplex stainless steel. ISIJ International. 2008;48:1596-1602. http://dx.doi.org/10.2355/isijinternational.48.1596.

24 Hirsch J, Lücke K. Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals-I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metallurgica. 1988;36:2863-2882. http://dx.doi.org/10.1016/0001-6160(88)90172-1.

25 Olson GB, Cohen M. A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1976;7:1905-1914. http://dx.doi.org/10.1007/BF02654988.

26 Wroński S, Tarasiuk J, Bacroix B, Baczmański A, Braham C. Investigation of plastic deformation heterogeneities in duplex steel by EBSD. Materials Characterization. 2012;73:52-60. http://dx.doi.org/10.1016/j.matchar.2012.07.016.

27 Järvenpää A, Jaskari M, Karjalainen LP. Reversed microstructures and tensile properties after various cold rolling reductions in AISI 301LN steel. Metals. 2018;8. http://dx.doi.org/10.3390/met8020109.

28 Järvenpää A, Jaskari M, Man J, Karjalainen LP. Austenite stability in reversion-treated structures of a 301LN steel under tensile loading. Materials Characterization. 2017;127:12-26. http://dx.doi.org/10.1016/j.matchar.2017.01.040.

29 Poulon-Quintin A, Brochet S, Vogt JB, Glez JC, Mithieux JD. Fine grained austenitic stainless steels: the role of strain induced α′ martensite and the reversion mechanism limitations. ISIJ International. 2009;49:293-301. http://dx.doi.org/10.2355/isijinternational.49.293.

30 Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyröläinen A. Enhanced mechanical properties through reversion in metastable austenitic stainless steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2009;40:729-744. http://dx.doi.org/10.1007/s11661-008-9723-y.

31 Poudens A, Bacroix B, Bretheau T. Influence of microstructures and particle concentrations on the development of extrusion textures in metal matrix composites. Materials Science and Engineering A. 1995;196:219-228. http://dx.doi.org/10.1016/0921-5093(94)09703-8.

32 Zhang W, Hu J. Effect of annealing temperature on transformation induced plasticity effect of a lean duplex stainless steel. Materials Characterization. 2013;79:37-42. https://doi.org/10.1016/j.matchar.2013.02.003.

33 De AK, Speer JG, Matlock DK, Murdock DC, Mataya MC, Comstock RJ. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2006;37:1875-1886. http://dx.doi.org/10.1007/s11661-006-0130-y.

34 Soares GC, Rodrigues MCM, Santos LA. Influence of temperature on mechanical properties, fracture morphology and strain hardening behavior of a 304 stainless steel. Materials Research. 2017;20:141-151. http://dx.doi.org/10.1590/1980-5373-mr-2016-0932.

35 Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science. 2003;48:171-273. http://dx.doi.org/10.1016/S0079- 6425(02)00003-8.

36 Martin S, Wolf S, Martin U, Krüger L, Rafaja D. Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2016;47:49-58. http://dx.doi.org/10.1007/s11661-014- 2684-4.

37 Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn- Al-C steel. Acta Materialia. 2012;60:5791-5802. http://dx.doi.org/10.1016/j.actamat.2012.07.018.

38 Eskandari Sabzi H, Zarei-Hanzaki A, Kaijalainen A, Kisko A. The valuation of microstructural evolution in a thermo-mechanically processed transformation- twinning induced plasticity steel during strain hardening. Materials Science and Engineering A. 2019;754:799-810. http://dx.doi.org/10.1016/j.msea.2018.09.068.

39 Challa VSA, Wan XL, Somani MC, Karjalainen LP, Misra RDK. Strain hardening behavior of phase reversioninduced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Materials Science and Engineering A. 2014;613:60-70. http://dx.doi.org/10.1016/j.msea.2014.06.065.

40 Rodrigues DG, Maria GGB, Viana NAL, Santos DB. Effect of low cold- rolling strain on microstructure, texture, phase transformation, and mechanical properties of 2304 lean duplex stainless steel. Materials Characterization. 2019;150:138-149. http://dx.doi.org/10.1016/j.matchar.2019.02.011.

41 Stachowicz F. Instantaneous plastic flow properties of thin brass sheets under uniaxial and biaxial testing. Acta Mech. Slovaca. 2011;15:22-27. http://dx.doi.org/10.21496/ams.2011.003.

42 Pérez Escobar D, Silva Ferreira De Dafé S, Verbeken K, Brandão Santos D. Effect of the cold rolling reduction on the microstructural characteristics and mechanical behavior of a 0.06%C-17%Mn TRIP/TWIP steel. Steel Research International. 2016;87:95-106. http://dx.doi.org/10.1002/srin.201400555.

43 Zhang X, Wang P, Li D, Li Y. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel. Journal of Materials Science and Technology. 2021;72:180-188. http://dx.doi.org/10.1016/j.jmst.2020.09.023.

44 Olson GB, Cohen M. A general mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1976;7:1915-1923. http://dx.doi.org/10.1007/BF02659824.

45 Liu H, Liu B, Bai P, Sun H, Li D, Sun F, et al. Martensitic transformation and fractographic analysis of lean duplex stainless steel during low temperature tension deformation. Materials Characterization. 2015;107:262-269. http://dx.doi.org/10.1016/j.matchar.2015.07.019.

46 Ding H, Ding H, Song D, Tang Z, Yang P. Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn. Materials Science and Engineering A. 2011;528:868-873. http://dx.doi.org/10.1016/j.msea.2010.10.040.


Submetido em:
27/06/2022

Aceito em:
31/08/2022

632caaf7a9539552a62af7b3 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections