Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222758
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Effects of thermal aging and functionalized epoxy matrix with graphene nanoplates in fique fabric-reinforced composites

Efeitos do envelhecimento térmico e da matriz epóxi funcionalizada com nanoplacas de grafeno em compósitos reforçados com tecido fique

Michelle Souza Oliveira; Fernanda Santos da Luz; Andreza Menezes Lima; Foluke Salgado de Assis; Artur Camposo Pereira; Fábio de Oliveira Braga; Sérgio Neves Monteiro; André Ben-Hur da Silva Figueiredo

Downloads: 1
Views: 548

Abstract

Currently, the demand for high quality and reliable components and materials is increasing, so bending testing has become a vital test method, both in research and manufacturing and development process, to explain in detail about the material’s ability to withstand deformation under load. This research investigated flexural properties of polymeric composites reinforced with natural fiber, in particular the fique fabric, with addition of graphene nanoplates (GNP) (0.1%; 0.5% and 0.9%) and degradation at high temperature (0, 5 and 10 days), as it was never reported. Using design of experiments (DoE), ie, 3-full factorial design with two replications, aiming to analyze the effects of important parameters, which are exposure time and GNP addition percentage. The output response measurement was identified as deflection at fracture, modulus of rupture and elasticity values. Randomized experiments were conducted based on table generated via Minitab 19 software. Scanning electron microscopy analysis confirmed the main influences on flexural analysis responses.

Keywords

Natural fiber; Thermal aging; Graphene nanoplates; Polymer matrix

Resumo

Atualmente, a demanda por componentes e materiais de alta qualidade e confiabilidade está aumentando, de modo que os testes de flexão se tornaram um método de teste vital tanto na pesquisa quanto no processo de fabricação e desenvolvimento para explicar em detalhes sobre a capacidade do material de suportar deformação sob carga. Esta pesquisa investigou as propriedades de flexão de compósitos poliméricos de reforço de fibra natural, em especial o tecido de fique, com adição de nanoplacas de grafeno (NPG) (0,1%; 0,5% e 0,9%) e degradação em alta temperatura (0, 5 e 10 dias), uma vez que nunca foi relatado. Usando o planejamento de experimento fatorial (PEF), ou seja, fatorial completo com dois fatores e três níveis com duas repetições, objetivando a análise dos efeitos de parâmetros importantes que são o tempo de exposição e a porcentagem de adição de NPG. A medição da resposta de saída foi identificada como valores de deflexão, resistência à flexão e rigidez. Os experimentos randomizados foram conduzidos com base na tabela gerada via software Minitab 19. Análise de microscopia eletrônica de varredura ratificou as principais influencias nas respostas da análise de flexão.

Palavras-chave

Fibra natural; Envelhecimento térmico; Nanoplacas de grafeno; Matriz polimérica

Referências

1 Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials. 2019;6:226.

2 Luz FSD, Garcia FC Fo, Oliveira MS, Nascimento LFC, Monteiro SN. Composites with natural fibers and conventional materials applied in a hard armor: a comparison. Polymers. 2020;12(9):1920.

3 Karimah A, Ridho MR, Munawar SS, Adi DS, Ismadi, Damayanti R, et al. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology. 2021;13:2442-2458.

4 Monteiro SN, Assis FS, Ferreira CL, Simonassi NT, Weber RP, Oliveira MS, et al. Fique fabric: a promising reinforcement for polymer composites. Polymers. 2018;10(3):246.

5 Wang X, Petrů M. Degradation of bending properties of flax fiber reinforced polymer after natural aging and accelerated aging. Construction & Building Materials. 2020;240:117909.

6 Oliveira MS, Luz FS, Costa Garcia F Fo, Pereira AC, Oliveira Aguiar V, Lopera HAC, et al. Dynamic mechanical analysis of thermally aged fique fabric-reinforced epoxy composites. Polymers. 2021;13(22):4037.

7 Kuram E. UV and thermal weathering of green composites: comparing the effect of different agricultural waste as fillers. Journal of Composite Materials. 2020;54(24):3683-3697.

8 Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B. Applications of natural fibers and its composites: an overview. Natural Resources. 2016;7(3):108-114.

9 Braga FDO, Lopes PHLM, Oliveira MS, Monteiro SN, Lima ÉP Jr. Thickness assessment and statistical optimization of a 3-layered armor system with ceramic front and curaua fabric composite/aluminum alloy backing. Composites. Part B, Engineering. 2019;166:48-55.

10 Koronis G, Silva A, Foong S. Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments. Materials Today. Communications. 2017;13:317-324.

11 Kumar R, Singh RP, Kataria R. Study on flexural performance of fabricated natural fiber hybrid polypropylene composite: an experimental investigation through designed experiments. World Journal of Engineering. 2019;16(3):389-400.

12 Liu F, Shi Y, Najjar L. Application of design of experiment method for sports results. Procedia Computer Science. 2017;122:720-726.

13 Nurulhuda A, Hafizzal Y, Izzuddin MZM, Sulawati MRN, Rafidah A, Suhaila Y, et al. Analysis on flexural strength of A36 mild steel by Design of Experiment (DOE). In: IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing.

14 Badizi RM, Parizad A, Askari-Paykani M, Shahverdi HR. Optimization of mechanical properties using D-optimal factorial design of experiment: Electromagnetic stir casting process of A357−SiC nanocomposite. Transactions of Nonferrous Metals Society of China. 2020;30(5):1183-1194.

15 Silva BJ, Menezes R, Santana L, Melo L, Neves GA, Ferreira HC. Use of statistical techniques to model the flexural strength of ceramic bodies containing granite waste. Matéria (Rio de Janeiro). 2012;17(1)

16 Rostamiyan Y, Fereidoon A, Rezaeiashtiyani M, Hamed Mashhadzadeh A, Salmankhani A. Experimental and optimizing flexural strength of epoxy-based nanocomposite: Effect of using nano silica and nano clay by using response surface design methodology. Materials & Design. 2015;69:96-104.

17 Rua J, Buchely MF, Monteiro SN, Echeverri GI, Colorado HA. Impact behavior of laminated composites built with fique fibers and epoxy resin: a mechanical analysis using impact and flexural behavior. Journal of Materials Research and Technology. 2021;14:428-438.

18 Şükür EF, Önal G. Graphene nanoplatelet modified basalt/epoxy multi-scale composites with improved tribological performance. Wear. 2020;460:203481.


Submetido em:
27/06/2022

Aceito em:
17/05/2023

64b7edffa953953dbc2ef1e4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections