Influence of Arapaima gigas fish scales as reinforcement in DGEBA/TETA epoxy composite for flooring applications: mechanical and thermal behavior
Wendell Bruno Almeida Bezerra; Ulisses Oliveira Costa; João Gabriel Passos Rodrigues; Benjamin Seth Lazarus; Sheron Stephany Tavares; Fernanda Santos da Luz; Sérgio Neves Monteiro
Abstract
Given the ever-growing environmental concerns, repurposing natural materials is a viable approach to developing novel green materials. Thus, the use of fish scales as reinforcement in composites has great potential. This work aimed to evaluate the influence of using arapaima fish scales as reinforcement in DGEBA/TETA epoxy composites on the mechanical and thermal properties. Composite plates using 30 vol% of arapaima fish scales were analyzed through compression tests, DMA, TGA, and DSC. The compression tests of 30 vol% arapaima/epoxy composites showed a significant increase both in Young’s modulus (from 710.88±98 at 0% to 1406.20±241 MPa at 30 vol% of scales) and compressive strength (from 20.80±7.14 at 0% to 68.4±11.69 MPa at 30 vol% of scales). The DMA and TGA results showed an improvement in the thermal properties of the composites as compared to the neat epoxy resin, while the DSC results demonstrated that the use of the fish scales as reinforcement did not impair the thermal stability of the resin. These results support the potential of arapaima fish scales as reinforcement in polymeric composites for flooring applications that require high compressive strength and thermal stability
Keywords
Referências
1 Liu S, Shen M, Yang C, Chiang C. A study on circular economy material using fish scales as a natural flame retardant and the properties of its composite materials. Polymers. 2021;13(15):2446. http://dx.doi.org/10.3390/polym13152446.
2 Xiang Q, Xiao F. Applications of epoxy materials in pavement engineering. Construction & Building Materials. 2020;235:117529. http://dx.doi.org/10.1016/j.conbuildmat.2019.117529.
3 Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Composites. Part B, Engineering. 2011;42:856-873. http://dx.doi.org/10.1016/j. compositesb.2011.01.010.
4 Garcia F Fo, Luz F, Oliveira M, Bezerra W, Barbosa J, Monteiro S. Influence of rigid Brazilian natural fiber arrangements in polymer composites: energy absorption and ballistic efficiency. Journal of Composites Science. 2021;5(8):201. http://dx.doi.org/10.3390/jcs5080201.
5 Oliveira M, Pereira A, Monteiro S, Garcia F Fo, Demosthenes L. Thermal behavior of epoxy composites reinforced with fique fabric by DSC. In Ikhmayies S, Li J, Vieira CMF, Margem JI, Braga FO, editors. Green materials engineering: an EPD symposium in honor of Sergio Monteiro. Cham: Springer; 2019. p. 101-6.
6 Costa U, Nascimento L, Garcia J, Bezerra W, Monteiro S. Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. Journal of Materials Research and Technology. 2020;9:373-382. http://dx.doi.org/10.1016/j.jmrt.2019.10.066.
7 Luz F, Monteiro S, Tommasini F. Evaluation of dynamic mechanical properties of PALF and coir fiber reinforcing epoxy composites. Materials Research. 2018;21(1):e20171108. http://dx.doi.org/10.1590/1980-5373-mr-2017-1108.
8 Oliveira M, Garcia F Fo, Luz F. Evaluation of dynamic mechanical properties of fique fabric / epoxy composites. Materials Research. 2019;22(1):e20190125. http://dx.doi.org/10.1590/1980-5373-MR-2019-0125.
9 Monteiro S, Calado V, Rodriguez R, Margem F. Thermogravimetric behavior of natural fibers reinforced polymer composites - an overview. Materials Science and Engineering A. 2012;557:17-28. http://dx.doi.org/10.1016/j.msea.2012.05.109.
10 Yang W, Sherman VR, Gludovatz B, Mackey M, Zimmermann EA, Meyers MA, et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomaterialia. 2014;10:3599-3614. http://dx.doi.org/10.1016/j.actbio.2014.04.009.
11 Yang W, Meyers MA, Ritchie RO. Structural architectures with toughening mechanisms in Nature: a review of the Materials Science of Type-I collagenous materials. Progress in Materials Science. 2019;103:425-483. http://dx.doi.org/10.1016/j.pmatsci.2019.01.002.
12 Liu Z, Zhang Y, Zhang M, Tan G, Zhu Y, Zhang Z, et al. Adaptive structural reorientation: developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomaterialia. 2019;86:96-108. http://dx.doi.org/10.1016/j.actbio.2019.01.010.
13 Torres FG, Troncoso OP, Nakamatsu J, Grande CJ, Gómez CM. Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima Gigas. Materials Science and Engineering C. 2008;28(8):1276-1283. http://dx.doi.org/10.1016/j.msec.2007.12.001.
14 Lin YS, Wei CT, Olevsky EA, Meyers MA. Mechanical properties and the laminate structure of Arapaima gigas scales. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4(7):1145-1156. http://dx.doi.org/10.1016/j.jmbbm.2011.03.024.
15 Sherman VR, Quan H, Yang W, Ritchie RO, Meyers MA. A comparative study of piscine defense: the scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula. Journal of the Mechanical Behavior of Biomedical Materials. 2017;73:1-16. http://dx.doi.org/10.1016/j.jmbbm.2016.10.001.
16 Arola D, Murcia S, Stossel M, Pahuja R, Linley T, Devaraj A, et al. The limiting layer of fish scales: structure and properties. Acta Biomaterialia. 2018;67:319-330. http://dx.doi.org/10.1016/j.actbio.2017.12.011.
17 Uskokovic V, Ignjatovic N, Petranovic N. Synthesis and characterization of Hydroxyapatite-collagen biocomposite materials. Materials Science Forum. 2003;413:269-274. http://dx.doi.org/10.4028/www.scientific.net/MSF.413.269.
18 Torres FG, Troncoso OP, Amaya E. The effect of water on the thermal transitions of fish scales from Arapaima Gigas. Materials Science and Engineering C. 2012;32(8):2212-2214. http://dx.doi.org/10.1016/j.msec.2012.06.003.
19 Satapathy A, Patnaik A, Pradhan MK. A study on processing, characterization and erosion behavior of fish (Labeo-rohita) scale filled epoxy matrix composites. Materials & Design. 2009;30(7):2359-2371. http://dx.doi.org/10.1016/j.matdes.2008.10.033.
20 Razi ZM, Islam MR, Parimalam M. Mechanical, structural, thermal and morphological properties of a protein (fish scale)-based bisphenol-A composites. Polymer Testing. 2019;74:7-13. http://dx.doi.org/10.1016/j. polymertesting.2018.12.008.
21 Aradhyula T, Bian D, Reddy A, Jeng Y, Chavali M, Sadiku E, et al. Compounding and the mechanical properties of catla fish scales reinforced-polypropylene composite - biowaste to biomaterial. Advanced Composite Materials. 2019;29(2):115-128. http://dx.doi.org/10.1080/09243046.2019.1647981.
22 Wu CS. Comparative assessment of the interface between poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fish scales in composites: preparation, characterization, and applications. Materials Science and Engineering C. 2019;104:109878. http://dx.doi.org/10.1016/j.msec.2019.109878.
23 Sekaran PR, Kumar SG, Singh JAJ, Vairamuthu J. Experiment investigation and analysis of fish scale reinforced polymer composite materials. Materials Today: Proceedings. 2020;33:4542-4545. http://dx.doi.org/10.1016/j. matpr.2020.08.059.
24 Bezerra W, Monteiro S, Oliveira M, Luz F, Garcia F Fo, Demosthenes L, et al. Processing and characterization of Arapaima gigas scales and their reinforced epoxy composites. Journal of Materials Research and Technology. 2020;9(3):3005-3012. http://dx.doi.org/10.1016/j.jmrt.2020.01.051.
25 ASTM International. ASTM D4065-12: standard practice for plastics: dynamic mechanical properties: determination and report of procedures. West Conshohocken: ASTM International; 2012.
26 ASTM International. ASTM D7028-07: standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA). West Conshohocken: ASTM International; 2015.
27 ASTM International. ASTM D6641 / D6641M-16e1: standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture. West Conshohocken: ASTM International; 2016.
28 Neuba L, Pereira R Jn, Ribeiro M, Souza A, Lima E, Garcia F Fo, et al. Promising mechanical, thermal, and ballistic properties of novel epoxy composites reinforced with cyperus malaccensis sedge fiber. Polymers. 2020;12(8):1776. http://dx.doi.org/10.3390/polym12081776.
29 Souza A, Pereira R Jn, Neuba L, Candido V, Silva A, Azevedo A, et al. Caranan fiber from Mauritiella armata palm tree as novel reinforcement for epoxy composites. Polymers. 2020;12(9):2037. http://dx.doi.org/10.3390/polym12092037.
30 Pereira R Jn, Nascimento L, Neuba L, Souza A, Moura J, Garcia F Fo, et al. Copernicia Prunifera leaf fiber: a promising new reinforcement for epoxy composites. Polymers. 2020;12(9):2090. http://dx.doi.org/10.3390/polym12092090.
31 Ribeiro M, Neuba L, Silveira P, Luz F, Figueiredo A, Monteiro S, et al. Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric. Journal of Materials Research and Technology. 2021;12:221-233. http://dx.doi.org/10.1016/j.jmrt.2021.02.064.
Submetido em:
17/06/2022
Aceito em:
16/05/2023