Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222772
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Development of unsaturated polyester/fiber glass composites with foundry sand

Matheus Vinícius Gregory Zimmermann, Eduardo Junca, Majorie Anacleto Bernardo, André Luís Catto, Cleide Borsoi

Downloads: 4
Views: 734

Abstract

In this study, the effect of the use of foundry sand as a filler on the formation of different layer configurations in polyester/fiber glass composites was investigated. The composites were produced by hand lay-up lamination and their physical, mechanical and morphological properties were investigated. In the samples containing sand as the filler, the configuration of the layers affected the interface region of the phases, thus significantly affecting the mechanical properties of the samples. The morphological analysis of the composites revealed the presence of regions with moderate interaction between the phases (polyester / glass fiber and polyester / foundry sand), which can cause delamination of the layers and consequently the deterioration of the mechanical properties of the composites when compared to the composite without the sand.

Keywords

Foundry sand; Unsaturated polyester; Multilayer composite; Glass fiber

Referências

1 Melo JD, Levy Neto F, De Araujo Barros G, De Almeida Mesquita FN. Mechanical behavior of GRP pressure pipes with addition of quartz sand filler. Journal of Composite Materials. 2011;45:717-726. http://dx.doi.org/10.1177/0021998310385593.

2 Gibson AG, Linden JM, Elder D, Leong KH. Non-metallic pipe systems for use in oil and gas. Plastics, Rubber and Composites. 2011;40:465-480. http://dx.doi.org/10.1179/1743289811Y.0000000006.

3 Benmokrane B, Hassan M, Robert M, Vijay PV, Manalo A. Effect of different constituent fiber, resin, and sizing combinations on alkaline resistance of basalt, carbon, and glass FRP bars. Journal of Composites for Construction. 2020;24:04020010. http://dx.doi.org/10.1061/(asce)cc.1943-5614.0001009.

4 Gonilha JA, Correia JR, Santos MS, Ferreira JG, Branco FA, Gomes RC. GFRP composite culverts for hydraulic and agricultural underpasses: structural behavior, design, and application. Journal of Composites for Construction. 2022;26:1-17. http://dx.doi.org/10.1061/(asce)cc.1943-5614.0001206.

5 Almahakeri M, Fam A, Moore ID. Longitudinal bending and failure of GFRP pipes buried in dense sand under relative ground movement. Journal of Composites for Construction. 2013;17:702-710. http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000340.

6 Ouarhim W, Ait-Dahi M, Bensalah MO, El Achaby M, Rodrigue D, Bouhfid R, et al. Characterization and numerical simulation of laminated glass fiber–polyester composites for a prosthetic running blade. Journal of Reinforced Plastics and Composites. 2021;40:118-133. http://dx.doi.org/10.1177/0731684420949662.

7 Ray S, Kumar Rout A, Kumar Sahoo A. A comparative analysis of the abrasion wear characteristics of industrial wastes filled glass/polyester composites based on the design of experiment and neural network. Polymer Composites. 2021;42:424-438. http://dx.doi.org/10.1002/pc.25836.

8 Abdul Halim ZA, Mat Yajid MA, Idris MH, Hamdan H. Effects of silica aerogel particle sizes on the thermal–mechanical properties of silica aerogel–unsaturated polyester composites. Plastics, Rubber and Composites. 2017;46:184-192. http://dx.doi.org/10.1080/14658011.2017.1306913.

9 Wei C, Yu XB, Lv J, Lu CH, Xu D. Dynamic mechanical, mechanical and morphological properties of reactive thermotropic liquid crystalline polymer/unsaturated polyester/glass fibre hybrid composites. Plastics, Rubber and Composites. 2008;37:198-203. http://dx.doi.org/10.1179/174328908X309321.

10 Wong KJ, Yousif BF, Low KO, Ng Y, Tan SL. Effects of fillers on the fracture behaviour of particulate polyester composites. Journal of Strain Analysis for Engineering Design. 2010;45:67-78. http://dx.doi.org/10.1243/03093247JSA553.

11 Rafiee R. Experimental and theoretical investigations on the failure of filament wound GRP pipes. Composites. Part B, Engineering. 2013;45:257-267. http://dx.doi.org/10.1016/j.compositesb.2012.04.009.

12 Sultana R, Akter R, Alam MZ. Preparation and characterization of sand reinforced polyester composites. International Journal of Engineering & Technology. 2013;13:111-118.

13 Beycioğlu A, Kaya O, Yıldırım ZB, Bagrıaçık B, Dobiszewska M, Morova N, et al. Use of GRP pipe waste powder as a filler replacement in hot-mix asphalt. Materials (Basel). 2020;13:1-15. http://dx.doi.org/10.3390/ma13204630.

14 Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resources, Conservation and Recycling. 2011;55:885-892. http://dx.doi.org/10.1016/j.resconrec.2011.05.001.

15 Rajeswaran M, Prathap P, Kannan S, Naveenkuma S. Evaluation of tensile and flexural properties of foundry slag reinforced particulate polymer composite. Materials Today: Proceedings. 2020;33:214-216. http://dx.doi.org/10.1016/j.matpr.2020.04.013.

16 Alekseev K, Mymrin V, Avanci MA, Klitzke W, Magalhães WLE, Silva PR, et al. Environmentally clean construction materials from hazardous bauxite waste red mud and spent foundry sand. Construction & Building Materials. 2019;229:116860. http://dx.doi.org/10.1016/j.conbuildmat.2019.116860.

17 ASTM International. ASTM D792-00. Standard test methods for density and specific gravity (relative density) of plastics by displacement. West Conshohocken: ASTM International; 2000.

18 ASTM International. ASTM D2734-16. Standard test methods for void content of reinforced plastics. West Conshohocken: ASTM International; 2016.

19 ASTM International. ASTM D570-98. Standard test method for water absorption of plastics. West Conshohocken: ASTM International; 1998.

20 ASTM International. ASTM D3039/D3039M-17. Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM International; 2017.

21 ASTM International. ASTM D7264M-07. Standard test method for flexural properties of polymer matrix composite Materials. West Conshohocken: ASTM International; 2007.

22 Nayak SK, Satapathy A. Development and characterization of polymer-based composites filled with micro-sized waste marble dust. Polymers & Polymer Composites. 2021;29:497-508. http://dx.doi.org/10.1177/0967391120926066.

23 Hamdan MHM, Siregar JP, Thomas S, Jacob MJ, Jaafar J, Tezara C. Mechanical performance of hybrid woven jute–roselle-reinforced polyester composites. Polymers & Polymer Composites. 2019;27:407-418. http://dx.doi.org/10.1177/0967391119847552.

24 Costa ML, Rezende MC, de Almeida SFM. Effect of void content on the moisture absorption in polymeric composites. Polymer-Plastics Technology and Engineering. 2006;45:691-698. http://dx.doi.org/10.1080/03602550600609549.

25 Ismail AS, Jawaid M, Naveen J. Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials (Basel). 2019;12. http://dx.doi.org/10.3390/ma12132094.

26 Anderson JP, Altan MCA. Formation of Voids in Composite Laminates: Coupled Effect of Moisture Content and Processing Pressure. Polymer Composites. 2015;16:376-384. http://dx.doi.org/10.1002/pc.22952.

27 Marinucci G. Materiais compósitos poliméricos. São Paulo: Artliber Editora, Ed.; 2011.

28 Malick, P.K. Fiber reinforced composites, materials, manufacturing, and design. London: Taylor & Francis Group.; LLC.; 2007.

29 Jawaid M, Khalil HPSA, Bakar AA, Khanam PN. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Materials & Design. 2011;32:1014-1019. http://dx.doi.org/10.1016/j.matdes.2010.07.033.

30 Saenz-Castillo D, Martín MI, Calvo S, Rodriguez-Lencea F, Güemes A. Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites. Composites. Part A, Applied Science and Manufacturing. 2019;121:308-320. http://dx.doi.org/10.1016/j.compositesa.2019.03.035.

31 Jiang W, Huang Z, Wang Y, Zheng B, Zhou H. Voids formation and their effects on mechanical properties in thermoformed carbon fiber fabric-reinforced composites. Polymer Composites. 2018;40:E1094-E1102. http://dx.doi.org/10.1002/pc.24876+.

32 Venkateshwaran N, ElayaPerumal A, Alavudeen A, Thiruchitrambalam M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials & Design. 2011;32:4017-4021. http://dx.doi.org/10.1016/j.matdes.2011.03.002.

33 Andreopoulos AG, Tarantili PA. Water sorption characteristics of epoxy resin-UHMPE fibers composites. Journal of Applied Polymer Science. 1998;70:747-755. http://dx.doi.org/10.1002/(SICI)1097-4628(19981024)70:4<747:AIDAPP14>3.0.CO;2-U.

34 Castaing P, Lemoine L. Effects of water absorption and osmotic degradation on long‐term behavior of glass fiber reinforced polyester. Polymer Composites. 1995;16:349-356. http://dx.doi.org/10.1002/pc.750160502.

35 De Albuquerque AC, Joseph K, De Carvalho HL, D’Almeida JRM. Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Composites Science and Technology. 2000;60:833-844. http://dx.doi.org/10.1016/S0266-3538(99)00188-8.

36 Georgiopoulos P, Christopoulos A, Koutsoumpis S, Kontou E. The effect of surface treatment on the performance of flax/biodegradable composites. Composites. Part B, Engineering. 2016;106:88-98. http://dx.doi.org/10.1016/j.compositesb.2016.09.027.

37 Espert A, Vilaplana F, Karlsson S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites. Part A, Applied Science and Manufacturing. 2004;35:1267-1276. http://dx.doi.org/10.1016/j.compositesa.2004.04.004.

38 Arbelaiz A, Fernández B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I. Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology. 2005;65:1582-1592. http://dx.doi.org/10.1016/j.compscitech.2005.01.008.

39 Jiang J, Mei C, Pan M, Cao J. Improved mechanical properties and hydrophobicity on wood flour reinforced composites: Incorporation of silica/montmorillonite nanoparticles in polymers. Polymer Composites. 2019;41:1090-1099. http://dx.doi.org/10.1002/pc.25440.


Submetido em:
07/07/2022

Aceito em:
18/10/2022

634560e7a9539577c6148313 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections