Caracterização microestrutural da camada de NiCrAlY sobre Ti-6Al-4V processado por laser de Yb:fibra
Microstructural characterization of NiCrAlY layer on Ti-6Al-4V processed by Yb-fiber laser
Renata Jesuina Takahashi, João Marcos Kruszynski de Assis, Rudimar Riva, Aline Capella de Oliveira, Danieli Aparecida Pereira Reis
Resumo
O processamento de materiais com laser é uma alternativa para formação de camadas densas e livres de porosidades, como exige a aplicação da camada metálica em TBC (Thermal Barrier Coating). O TBC é um sistema de camadas de materiais que promove proteção térmica e contra oxidação e corrosão em ligas metálicas, como a liga de titânio (grau 5). Este trabalho tem por objetivo o estudo da microestrutura formada entre a camada metálica de NiCrAlY e a liga Ti-6Al-4V por processamento com laser de Yb:fibra. A camada metálica foi pré depositada na forma de pó e submetida ao laser, cujos parâmetros de velocidade de varredura do feixe variou em 25, 50 e 100 mm/s com potência de 200 W e feixe do laser focalizado com diâmetro de 0,50 mm com sobreposição de 50%, a cada trilha. A avaliação dos parâmetros de laser foi composta pela análise de microscopia eletrônica de varredura, análise de difração de raios X, análise de EDS do perfil transversal da amostra. Os resultados mostraram que houve aderência entre a camada de NiCrAlY e o substrato com baixa diluição química na interface. Com o aumento da velocidade de varredura do feixe de laser, camadas metálicas mais finas foram formadas.
Palavras-chave
Abstract
The processing of materials with laser is an alternative to form dense and porosity-free layers, as required by the metallic layer in the TBC application (Thermal Barrier Coating). TBC is a system of layers that promote protection against oxidation, corrosion and thermal protection of metal alloys, such as titanium alloy (grade 5). The aim of this work was to study the micrograph formed between the NiCrAlY metallic layer and the Ti-6Al-4V alloy by Yb-fiber laser processing. The metallic layer was pre-deposited in the powder form and submitted to the laser, whose beam scanning speed parameters were varied in 25, 50 and 100 mm/s with laser beam power of 200W with 50% of superposition for each track. The evaluation of the laser parameters was composed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS) in cross-sectioned of the sample. The results showed that there was adhesion between the NiCrAlY layer and the substrate with low chemical dilution at the interface. As the scanning speed of the laser beam increased, thinner metallic layers were formed.
Keywords
References
1 Destefani JD. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. In: ASM International, editor. ASM Handbook. 2nd ed. West Conshohocken: ASM International; 1990. p. 586-591.
2 Clarke DR, Levi CG. Materials Design for the Next Generation Thermal Barrier Coatings. Annual Review of Materials Research. 2003;33(1):383-417.
3 Takahashi RJ, Assis JMK, Piorino Neto F, Reis DAP. Thermal conductivity study of ZrO2-YO1.5-NbO2.5 TBC. Journal of Materials Research and Technology. 2022;19:4932-4938.
4 Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280-284.
5 Toscano J, Vaßen R, Gil A, Subanovic M, Naumenko D, Singheiser L, et al. Parameters affecting TGO growth and adherence on MCrAlY-bond coats for TBC’s. Surface and Coatings Technology. 2006;201:3906-3910.
6 Takahashi RJ, Assis JMK, Neto FP, Reis DAP. Heat treatment for TGO growth on NiCrAlY for TBC application. Materials Research Express. 2019;6:126442.
7 Grant P. Thermal barrier coatings. In: Cantor B, Grand P, Assender H, editors. Aerospace materials. Bristol: Taylor & Francis; 2001. Chap. 22 Series in materials science and engineering.
8 Ito K, Shima T, Fujioka M, Arai M. Improvement of oxidation resistance and adhesion strength of thermal barrier coating by grinding and grit-blasting treatments. J Therm Spray Tech. 2020;29:1728-1740. http://dx.doi.org/10.1007/s11666-020-01057-y.
9 Evans AG, Hutchinson JW. The mechanics of coating delamination in thermal gradients. Surface and Coatings Technology. 2007;201(18):7905-7916.
10 Subanovic M, Song P, Wessel E, Vassen R, Naumenko D, Singheiser L, et al. Effect of exposure conditions on the oxidation of MCrAlY-bondcoats and lifetime of thermal barrier coatings. Surface and Coatings Technology. 2009;204(6-7):820-823.
11 Lu Z, Myoung SW, Kim EH, Lee JH, Jung YG. Microstructure evolution and thermal durability with coating thickness in APS thermal barrier coatings. Materials Today: Proceedings. 2014;1(1):35-43.
12 Weng F, Chen C, Yu H. Research status of laser cladding on titanium and its alloys: A review. Materials & Design. 2014;58:412-425.
13 Tolochko NK, Khlopkov YV, Mozzharov SE, Ignatiev MB, Laoui T, Titov VI, et al. Absorptance of powder materials suitable for laser sintering. Rapid Prototyping Journal. 2000;6(3):155-161.
14 Anjos MA, Vilar R, Li R, Ferreira MG, Steen WM, Watkins K. FeCrNiMoC alloys produced by laser surface alloying. Surface and Coatings Technology. 1995;70(2-3):235-242.
15 Vert R, Chicot D, Decoopman X, Gruescu IC, Meillot E, Vardelle A, et al. Adhesive and cohesive properties of nanostructured Zr02 coatings by the original Vickers Indentation Cracking technique. Thin Solid Films. 2011;519(22):7789-7795.
16 Suárez A, Tobar MJ, Yáñez A, Pérez I, Sampedro J, Amigó V, et al. Modeling of phase transformations of Ti6Al4V during laser metal deposition. Physics Procedia. 2011;12(Pt A):666-673.
17 Teleginski V, Chagas D, Costa de Oliveira A, Santos J, Azevedo J, Riva R, et al. Yb:fiber laser surface texturing of stainless steel substrate, with MCrAlY deposition and CO2 laser treatment. Surface and Coatings Technology. 2014;260:251.
18 Teleginski V, Chagas DC, de Oliveira LG, de Vasconcelos G. Interface Evaluation of MCrAlY Powder Bond Coat on 316 SS Processed with Laser Irradiation. Materials Science Forum. 2014;802:409-414.
19 Kannatey-Asibu E Jr. Principles of laser materials processing. Hoboken, NJ: Wiley; 2009.
20 DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science. 2018;92:112-224.
21 Gu D, Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Materials & Design. 2009;30(8):2903-2910.
22 Ardila-Rodríguez LA, Menezes BRC, Pereira LA, Takahashi RJ, Oliveira AC, Travessa DN. Surface modification of aluminum alloys with carbon nanotubes by laser surface melting. Surface and Coatings Technology. 2019;377:124930.
23 Zhou X, Liu X, Zhang D, Shen Z, Liu W. Balling phenomena in selective laser melted tungsten. Journal of Materials Processing Technology. 2015;222:33-42.
24 Vilar R, Santos EC, Ferreira PN, Franco N, da Silva RC. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding. Acta Materialia. 2009;57(18):5292-5302.
25 Meng Q, Geng L, Ni D. Lasr cladding NiCoCrAlY coating on Ti-6Al-4V. Materials Letters. 2005;59(22):2774-2777.
26 Takahashi RJ, Assis JMK, Reis DAP. Microstructural characterization of zirconia co-doped with yttria and niobia by laser deposition on Ti-6Al-4V as a thermal barrier for application in turbines. Warrendale: SAE International. SAE Technical Paper. 2018-36-0332
27 Pereira JC, Zambrano JC, Rayón E, Yañez A, Amigó V. Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding: the influence of the Ni, Co and Al content. Surface and Coatings Technology. 2018;338:22-31.
28 Partes K, Giolli C, Borgioli F, Bardi U, Seefeld T, Vollertsen F. High temperature behaviour of NiCrAlY coatings made by laser cladding. Surface and Coatings Technology. 2008;202(10):2208-2213.
Submitted date:
07/20/2022
Accepted date:
11/10/2022