Avaliação prática da efetividade da nodularização in mold e sua aplicação na definição da microestrutura e das características dos ferros fundidos nodulares
Practical evaluation of the effectiveness of nodularization in mold and its application in defining the microstructure and characteristics of ductile iron
Cláudio Lúcio Pereira dos Santos, Elaine Carballo Siqueira Corrêa, Joel Lima
Resumo
Uma das etapas mais importantes da tecnologia de fabricação de ferros fundidos nodulares está relacionada aos processos de nodularização. Entretanto, há escassez de fontes de informações técnicas que sintetizem e comparem as características dos processos de nodularização, induzindo sua realização de modo empírico (tentativa e erro), e levando à adoção de processos com baixo desempenho, altos custos, elevados riscos e impactos ambientais. O presente artigo descreve os principais processos de nodularização, destacando o rendimento residual de magnésio em cada um deles. A partir deste levantamento, foi desenvolvido procedimento experimental para avaliar e comprovar a maior eficiência da nodularização “in mold”, em relação aos demais processos descritos, por meio do rendimento do magnésio. Nos experimentos foram utilizados corpos de prova escalonados com diferentes seções para verificar a influência da velocidade de resfriamento na formação da grafita esferoidal e na constituição da matriz metálica, de forma a demonstrar a eficácia da nodularização in mold e apresentar os resultados de microestrutura para cada espessura. Constatamos que o processo “in mold” possibilita um eficiente controle da nodularização, alcança maior rendimento do magnésio (acima de 80%), conforme descrito na bibliografia e, como consequência, elevado grau de nodularização (acima de 90%).
Palavras-chave
Abstract
One of the most important steps in the manufacturing technology of ductile iron is related to the nodularization processes. However, there is a scarcity of sources of technical information that synthesize and compare the characteristics of the nodularization processes, inducing their realization in an empirical way (trial and error), and leading to the adoption of processes with low performance, high costs, high risks and environmental impacts. This article describes the main nodularization processes, highlighting the residual magnesium yield in each of them. From this survey, an experimental procedure was developed to evaluate and prove the greater efficiency of “in mold” nodularization, in relation to the other processes described, through the magnesium yield. In the experiments, staggered specimens with different sections were used to verify the influence of the cooling rate on the formation of spheroidal graphite and on the constitution of the metallic matrix, in order to demonstrate the effectiveness of nodularization in mold and present the microstructure results for each thickness. We found that the “in mold” process allows for an efficient control of nodularization, achieves a higher yield of magnesium (above 80%), as described in the bibliography and, as a consequence, a high degree of nodularization (above 90%).
Keywords
Referências
1 Akinribide OJ, Olusunle SOO, Akinwamide SO, Babalola BJ, Olubambi PA. Impact of heat treatment on mechanical and tribological behavior of unalloyed and alloyed ductile iron. Journal of Materials Research and Technology. 2021;14:1809-1819.
2 Wang B, Qiub F, Barber GC, Pan W, Cui W, Wang R. Microstructure, wear behavior and surface hardening of austempered ductile iron. Journal of Materials Research and Technology. 2020;9(5):9838-9855.
3 Iacovielloa F, Di Cocco V, Favaro G. Pearlitic Ductile Cast Iron: mechanical properties gradient analysis in graphite elements. Procedia Structural Integrity. 2018;9:9-15.
4 Wang C. Spheroidal graphite crankshaft foundry and development. Automobile Technology & Material. 2006;(3):1-3.
5 Eraslan D, Balci A, Çetin B, Uçak N, Çiçek A, Yilmaz OD, et al. Machinability evaluations of austempered ductile iron and cast steel with similar mechanical properties under eco-friendly milling conditions. Journal of Materials Research and Technology. 2021;11:1443-1456.
6 Cai Q, Wei B. Recent development of ductile cast iron production technology in China. China Foundry. 2008;5(2):82-91.
7 Barton R. Magnesium treatment process for the production of nodular graphite SG iron. United Kingdom: British Cast Iron Research Association; 1975. (BCIRA Confidential Report; no. 1188).
8 Riposan I, Chisamera M, Stan S, Skaland T. Surface graphite degeneration in ductile iron castings for resin molds. Tsinghua Science and Technology. 2008;13(2):157-163.
9 Anjos VEA. Use of thermal analysis to control the solidification morphology of nodular cast irons and reduce feeding needs [thesis]. Essen: Universität Duisburg-Essen; 2015.
10 Ghosh S. Production aspects of spheroidal graphite iron. In: Proceedings of the Training Programme on Special Metal Casting and Forming Processes (CAFP); 2008; Jamshedpur. Jamshedpur: NML; 2008. p. 38-51.
11 Hansen GM, Hartung C, White D. The ductile iron treatment process revisited. In: Proceedings of the 71st World Foundry Congress: Advanced Sustainable Foundry; 2014; Bilbao. New York: Curran Associates; 2014. p. 287-294.
12 Cabanne PM. Magnesium cored wire treatment advantages and disadvantages vis-à-vis other processes. Illinois: Sorelmetal Technical Services, Suggestions for Ductile Iron Production; 2006. p. 1-2.
13 Guesser WL, Guedes LC, Duran PV, Santos ABS. Inoculação e nodulização de ferros fundidos. In: Anais do Seminário Inoculação e Nodulização de Ferros Fundidos; 1990; São Paulo. São Paulo: ABM; 1990. p. 1-20.
14 Baumgart W, Cunha J, Anjos V. Het enten van gietijzer. Gietwerk Perspectief Magazine. 2010;(5):5-12.
15 Dunks CM, Race B. Stream treatment for processing nodular iron. The British Foundryman. 1981;74:15-19.
16 Barton R. Análise comparativa entre processos de nodularização. United Kingdom: British Cast Iron Research Association; 1979. (BCIRA Confidential Report; no. 1350).
17 Santos ABS, Branco CHC. Metalurgia dos ferros fundidos cinzentos e nodulares. 3ª ed. São Paulo: IPT; 1989.
18 Brown J. Foseco ferrous foundryman’s handbook. 1st ed. Oxford: Butterworth-Heinemann; 2000.
19 Bex T. Ductile iron: one of the centuries’s metallurgical triumphs. Modern Casting. 1991;(February):82-91.
20 Slaland T. Ductile iron shrinkage control through graphite nucleation and growth. International Journal of Cast Metals Research. 2003;16(1-3):11-16.
21 Stefanescu DM, editor. Casting. In: ASM International, editor. ASM handbook. 9th ed. Vol. 15. Ohio: ASM International; 1988.
22 Drumond PP. Ferro fundido de grafita esferoidal. Vol. 3. Belo Horizonte: Editora Senai; 2010. 77 p.
23 Kamińska J, Angrecki M, Stefański Z, Palma A. Effect of wall thickness on the microstructure of ductile iron castings manufactured by the in mold process using a reaction chamber. Archives of Foundry Engineering. 2018;18:50-54.
Submetido em:
11/08/2022
Aceito em:
30/09/2022