Tecnologia em Metalurgia, Materiais e Mineração
Tecnologia em Metalurgia, Materiais e Mineração
Artigo de Revisão – Edição especial 75th ABM Annual Congress

Crystallographic texture configured by laser powder bed fusion  additive manufacturing process: a review and its potential  application to adjust mechanical properties of metallic products

Willy Ank de Morais, Fernando José Gomes Landgraf

Downloads: 1
Views: 346


The performance of engineering materials depends on the conciliation between their structure defined by the fabrication process and the properties required for their application. Within this context, the new developments in the additive manufacturing (AM) process offer great potential to generate new applications and to induce technological innovations with engineering materials. One of these innovations is the possibility of using the crystallographic texture to control proprieties that normally would not be adjustable by other mechanisms, but which are needed in certain specific applications, such as low stiffness for metallic implant parts. In this way, this article presents a structured review to describe trends in production parameters of AM by LPBF process suitable to obtain and control crystallographic texture aiming to improve the property-performance relationship of metallic materials. The increasing evolution of AM by LPBF technology is generating opportunities to increase control over texture and thus over texture-dependent properties of metallic materials products. Despite the potential of tailoring material properties by texture control, the practical use of this technique in AM by LPBF processes is still incipient.


Additive manufacturing; Microstructure control; Crystalline texture; Stiffness


1 Meyers MA, Chawla KK. Mechanical behavior of materials. 2nd ed. Cambridge: Cambridge University Press; 2009.

2 Suwas S, Ray RK. Crystallographic texture of materials. London: Springer-Verlag; 2014.

3 Callister WD Jr, Rethwisch DG. Fundamentals of materials science and engineering: an integrated approach. 5th ed. Versailles: John Wiley & Sons; 2019.

4 Müller A. Solidificação e análise térmica dos metais. Porto Alegre: Editora UFRGS; 2002.

5 Sinha AK. Physical metallurgy handbook. New York: McGraw-Hill; 2003.

6 Hagihara K, Nakano T. Control of anisotropic crystallographic texture in powder bed fusion additive manufacturing of metals and ceramics - a review. JOM. 2022;74:1760-1773. http://dx.doi.org/10.1007/s11837-021-04966-7.

7 Magnabosco AS. Recristalização, crescimento de grãos e textura cristalina. In: Morais WA, Magnabosco AS, Menezes EB No, editors. Metalurgia física e mecânica aplicada. 2nd ed. São Paulo: ABM; 2009. Vol. 1, p. 257-288.

8 Gibson I, Rosen DW, Strucker B. Additive manufacturing technologies - rapid prototyping to direct digital manufacturing. New York: Springer; 2010.

9 DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components-process, structure and properties. Progress in Materials Science. 2018;92:112-224. http://dx.doi.org/10.1016/j.pmatsci.2017.10.001.

10 Prakash KS, Nancharaih T, Rao VVS. Additive manufacturing techniques in manufacturing - an overview. Materials Today: Proceedings. 2018;5:3873-3882. http://dx.doi.org/10.1016/j.matpr.2017.11.642.

11 Collins PC, Brice DA, Samimi P, Ghamarian I, Fraser HL. Microstructural control of additively manufactured metallic materials. Annual Review of Materials Research. 2016;46:63-91. https://doi.org/10.1146/annurevmatsci-070115-031816.

12 Hibino S, Todo T, Ishimoto T, Gokcekaya O, Koizumi Y, Igashira K, et al. Control of crystallographic texture and mechanical properties of hastelloy-X via laser powder bed fusion. Crystals. 2021;11(9):1064. http://dx.doi.org/10.3390/cryst11091064.

13 Thijs L, Sistiaga MLM, Wauthle R, Xie Q, Kruth J-P, Humbeeck JV. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Materialia. 2013;61:4657-4668. http://dx.doi.org/10.1016/j.actamat.2013.04.036.

14 Vrancken B. Study of residual stresses in selective laser melting [PhD thesis]. Heverlee: KU Leuven, Faculty of Engineering Science; 2016.

15 Vlasea ML, Lane B, Lopez F, Mekhontsev S, Donmez A. Development of powder bed fusion additive manufacturing test bed for enhanced real-time process control. In: The University of Texas at Austin. Proceedings of the 34th International Solid Freeform Fabrication Symposium; 2015 Aug 10-12; Austin, USA. Pittsburgh: TMS; 2015. p. 527-539.

16 Roesler J, Harders H, Baeker M. Mechanical behaviour of engineering materials - metals, ceramics, polymers, and composites. Berlin: Springer; 2007.

17 Morais WA, Vasques MT, Nobre RM, Landgraf FJG. Proposta de procedimento para estimar a rigidez em metais texturizados pela análise dos dados de EBSD. Unisanta – Science & Technology. 2020 [cited 2023 Mar 19];9(1):38-45. Disponível em: https://periodicos.unisanta.br/index.php/sat/article/view/2471

18 Ishimoto T, Hagihara K, Hisamoto K, Nakano T. Stability of crystallographic texture in laser powder bed fusion: understanding the competition of crystal growth using a single crystalline seed. Additive Manufacturing. 2021;43:102004. http://dx.doi.org/10.1016/j.addma.2021.102004.

19 Markov IV. Crystal growth for beginners. Singapore: World Scientific; 1995.

20 Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. Journal of Materials Science and Technology. 2019;35(2):270-284. http://dx.doi.org/10.1016/j.jmst.2018.09.004.

21 Dantizig JA, Rappaz M. Solidification. 2nd ed. Lausanne: EPFL Press; 2009. Dendritic growth; p. 317-384.

22 Fredriksson H, Åkerlind U. Solidification and crystallization processing in metals and alloys. West Sussex: John Wiley & Sons; 2012.

23 Rasch M, Heberle J, Dechet MA, Bartels D, Gotterbarm MR, Klein L, et al. Grain structure evolution of Al-Cu alloys in powder bed fusion with laser beam for excellent mechanical properties. Materials. 2020;13(82):1-22. http://dx.doi.org/10.3390/ma13010082.

24 Yu Y, Wang L, Zhou J, Li H, Li Y, Yan W, et al. Impact of fluid flow on the dendrite growth and the formation of new grains in additive manufacturing. Additive Manufacturing. 2022;55:102832. http://dx.doi.org/10.1016/j.addma.2022.102832.

25 Lippold JC. Welding metallurgy and weldability. New Jersey: John Wiley & Sons; 2015.

26 Sun SH, Hagihara K, Nakano T. Effect of scanning strategy on texture formation in Ni-25at.%Mo alloys fabricated by selective laser melting. Materials & Design. 2018;140:307-316. http://dx.doi.org/10.1016/j.matdes.2017.11.060.

27 Andreau O, Koutiri I, Peyre P, Penot JD, Saintier N, Pessard E, et al. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. Journal of Materials Processing Technology. 2019;264:21-31. http://dx.doi.org/10.1016/j.jmatprotec.2018.08.049.

28 Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. New York: Springer; 2010.

29 Johnson L, Mahmoudi M, Zhang B, Seede R, Huang X, Maier JT, et al. Assessing printability maps in additive manufacturing of metal alloys. Acta Materialia. 2019;176:199-210. http://dx.doi.org/10.1016/j.actamat.2019.07.005.

30 Majumdar T, Bazin T, Ribeiro EMC, Frith JE, Birbilis N. Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties. PLoS One. 2019;14(8):1-24. http://dx.doi.org/10.1371/journal.pone.0221198.

31 Garibaldi M, Ashcroft I, Simonelli M, Hague R. Metallurgy of high-silicon steel parts produced using selective laser melting. Acta Materialia. 2016;110:207-216. http://dx.doi.org/10.1016/j.actamat.2016.03.037.

32 Malekipour E, El-Mounayri H. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review. International Journal of Advanced Manufacturing Technology. 2018;95:527-550. http://dx.doi.org/10.1007/s00170-017-1172-6.

33 Yin J, Peng G, Chen C, Yang J, Zhu H, Ke L, et al. Thermal behavior and grain growth orientation during selective laser melting of Ti-6Al-4V alloy. Journal of Materials Processing Technology. 2018;260:57-65. http://dx.doi.org/10.1016/j.jmatprotec.2018.04.035.

34 Landgraf FJG, Morais WA. Considerações quanto à formação de textura cristalina em materiais metálicos produzidos por manufatura aditiva (FLP-L). In: Rede PDIMat. Proceedings of the I Congresso Brasileiro de Engenharia da Rede PDIMat; 2020 Nov 3-5; Natal, Brazil. Natal: UFRN; 2020. p. 584-594.

35 Guzmán J, Nobre RM, Rodrigues DL Jr, Morais WA, Nunes ER, Bayerlein DL, et al. Comparing spherical and irregularly shaped powders in laser powder bed fusion of Nb47Ti alloy. Journal of Materials Engineering and Performance. 2021;30:6557-6567. http://dx.doi.org/10.1007/s11665-021-05916-9.

36 Jodi DE, Kitashima T, Koizumi Y, Nakano T, Watanabe M. Manufacturing single crystals of pure nickel via selective laser melting with a flat-top laser beam. Additive Manufacturing Letters. 2022;3:1-8. http://dx.doi.org/10.1016/j.addlet.2022.100066.

37 Nobre RM, Morais WA, Vasques MT, Guzmán J, Rodrigues DL Jr, Oliveira HR, et al. Role of laser powder bed fusion process parameters in crystallographic texture of additive manufactured Nb-48Ti alloy. Journal of Materials Research and Technology. 2021;14:484-495. http://dx.doi.org/10.1016/j.jmrt.2021.06.054.

38 Bontha S, Klingbeil NW, Kobryn PA, Fraser HL. Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. Journal of Materials Processing Technology. 2006;178(1-3):135-142. http://dx.doi.org/10.1016/j.jmatprotec.2006.03.155.

39 Promoppatum P, Yao SC, Pistorius PC, Rollett AD. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of inconel 718 products made by laser powder-bed fusion. Engineering. 2017;3(5):685-694. http://dx.doi.org/10.1016/J.ENG.2017.05.023.

40 Wei HL, Bhadeshia HKDH, David SA, DebRoy T. Harnessing the scientific synergy of welding and additive manufacturing. Science and Technology of Welding and Joining. 2019;24(5):361-366. http://dx.doi.org/10.1080/13621718.2019.1615189.

41 Mukherjee T, Wei HL, De A, DebRoy T. Heat and fluid flow in additive manufacturing - Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Computational Materials Science. 2018;150:369-380. http://dx.doi.org/10.1016/j.commatsci.2018.04.027.

42 Liu J, To AC. Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting. Additive Manufacturing. 2017;16:58-64. http://dx.doi.org/10.1016/j.addma.2017.05.005.

43 Reijonen J, Revuelta A, Riipinen T, Ruusuvuori K, Puukko P. On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing. Additive Manufacturing. 2020;32:1-10. http://dx.doi.org/10.1016/j.addma.2019.101030.

44 Pham MS, Dovgyy B, Hooper PA, Christopher MG, Piglione A. The role of side-branching in microstructure development in laser powder-bed fusion. Nature Communications. 2020;11:1-12. http://dx.doi.org/10.1038/s41467-020-14453-3.

45 Tsutsumi Y, Ishimoto T, Oishi T, Manaka T, Chen P, Ashida M, et al. Crystallographic texture- and grain boundary density-independent improvement of corrosion resistance in austenitic 316L stainless steel fabricated via laser powder bed fusion. Additive Manufacturing. 2012;45:1-9. http://dx.doi.org/10.1016/j.addma.2021.102066.

46 Sun SH, Ishimoto T, Hagihara K, Tsutsumi Y, Hanawa T, Nakano T. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Scripta Materialia. 2019;159:89-93. http://dx.doi.org/10.1016/j.scriptamat.2018.09.017.

47 Ishimoto T, Wu S, Ito Y, Sun SH, Amano H, Nakano T. Crystallographic orientation control of 316L austenitic stainless steel via selective laser melting. ISIJ International. 2020;60(8):1758-1764. http://dx.doi.org/10.2355/isijinternational.ISIJINT-2019-744.

48 Guzmán J, Nobre RM, Rodrigues DL Jr, Morais WA, Nunes ER, Bayerlein DL, et al. Comparing spherical and irregularly shaped powders in laser powder bed fusion of Nb47Ti alloy. Journal of Materials Engineering and Performance. 2021;30:6557-6567. http://dx.doi.org/10.1007/s11665-021-05916-9.

49 Ishimoto T, Hagihara K, Hisamoto K, Sun SH, Nakano T. Crystallographic texture control of beta-type Ti-15Mo5Zr-3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus. Scripta Materialia. 2017;132:34-38. http://dx.doi.org/10.1016/j.scriptamat.2016.12.038.

50 Geiger F, Kunze K, Etter T. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies. Materials Science and Engineering A. 2016;661:240-246. http://dx.doi.org/10.1016/j.msea.2016.03.036.

51 Bruna-Rosso C, Caprio L, Mazzoleni L, Pacher M, Demir A, Previtali B. Influence of temporal laser emission profile on the selective laser melting (SLM) of thin structures. Lasers in Engineering. 2020;47:161-182.

52 Patel S, Vlasea M. Melting modes in laser powder bed fusion. Materialia. 2020;9:1-12. http://dx.doi.org/10.1016/j.mtla.2020.100591.

53 Young ZA, Coday MM, Guo Q, Qu M, Hojjatzadeh SMH, Escano LI, et al. Uncertainties induced by processing parameter variation in selective laser melting of Ti6Al4V revealed by in-situ X-ray imaging. Materials. 2022;15(530):1-17. http://dx.doi.org/10.3390/ma15020530.

54 Pilz S, Gustmann F, Günther F, Zimmermann M, Kühn U, Gebert A. Controlling the Young’s modulus of a ß-type Ti-Nb alloy via strong texturing by LPBF. Materials & Design. 2022;216:1-11. http://dx.doi.org/10.1016/j.matdes.2022.110516.

55 Saghaian SE, Nematollahi M, Toker G, Hinojos A, Moghaddam NS, Saedi S, et al. Effect of hatch spacing and laser power on microstructure, texture, and thermomechanical properties of laser powder bed fusion (L-PBF) additively manufactured NiTi. Optics & Laser Technology. 2022;149:1-14. http://dx.doi.org/10.1016/j.optlastec.2021.107680.

56 Elmay W, Patoor E, Bolle B, Gloriant T, Prima F, Eberhardt A, et al. Optimisation of mechanical properties of Ti-Nb binary alloys for biomedical applications. Computer Methods in Biomechanics and Biomedical Engineering. 2011;14(Suppl 1):119-120. http://dx.doi.org/10.1080/10255842.2011.593760.

Submetido em:

Aceito em:

6440197ea953955b8b15b0e6 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections