Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222809
Tecnologia em Metalurgia, Materiais e Mineração
Original Article – Special issue 75th ABM Annual Congress

Plasma nitriding of 410S ferritic/martensitic stainless steel: microstructure, wear and corrosion properties

Nitretação sob plasma do aço inoxidável ferrítico/martensítico 410S: microestrutura e propriedades em desgaste e corrosão

Luiz Bernardo Varela Jimenez; Milena Tosti Umemura; José Wilmar Calderón-Hernández; Rodrigo Magnabosco; Carlos Eduardo Pinedo; André Paulo Tschiptschin

Downloads: 2
Views: 348

Abstract

In this work, plasma nitriding treatments were performed on ferritic/martensitic stainless steel type 410S at 400 ºC (Low-temperature Plasma Nitriding - LTPN) and 530 ºC (Conventional Plasma Nitriding - CPN). The treatments were carried out under a 75% N2 -25% H2 gas mixture for 20 hours. After LTPN, a layer composed of expanded ferrite/martensite with a minor fraction of iron nitrides was obtained. In CPN, the nitrided surface consists of an outermost compound layer 15 μm thick followed by a diffusion zone with a depth of 170 μm. After both, CPN and LTPN nitriding treatments, the surface hardness increases more than four times compared to the original hardness of the non-nitrided steel and results in a flat-type transverse hardening profile for CPN and a diffuse-type profile for LTPN. The friction coefficients in the CPN and LTPN conditions, evaluated by the progressive linear scratching test, are lower than the condition without nitriding. The wear rate after nitriding is half that found for the non-nitriding condition. The corrosion resistance evaluated by immersion test in an aqueous solution with 3% FeCl3 for 88 hours shows that the behavior after LTPN is the same as in the non-nitrided condition, while for the CPN, the mass loss is higher and, therefore, the corrosion resistance is smaller than that observed for the LTPN. The precipitation of chromium nitrides during CPM nitriding leads to chromium depletion in the metal matrix. The results show the feasibility of promoting surface hardening of type 410S stainless steel by nitriding at low temperatures and improving the tribological properties without compromising corrosion resistance.

Keywords

Plasma nitriding; Stainless steel; Hardening; Wear; Corrosion

Resumo

Neste trabalho foram realizados tratamentos sob plasma no aço inoxidável ferrítico/martensítico tipo 410S a baixa temperatura 400 ºC (LTPN) e na temperatura convencional de 530 ºC (CPN). Os tratamentos foram realizados sob uma mistura gasosa composta de 75% N2 -25% H2 por 20 horas. Após a LTPN foi obtida uma camada composta por ferrita/ martensita expandida com uma fração minoritária de nitretos de ferro. Na CPN a superfície nitretada é constituída da camada de compostos com 15 μm de espessura seguida pela zona de difusão com 170 μm de profundidade. Após os tratamentos de nitretação CPN e LTPN a dureza superficial aumenta até mais de 4 vezes a dureza original do aço não nitretado e resulta em um perfil de endurecimento transversal do tipo plano para a CPN e do tipo difuso para a LTPN. Os coeficientes de atrito nas condições CPN e LTPN, avaliados por ensaio de riscamento linear progressivo, são inferiores à condição sem nitretação. A taxa de desgaste após a nitretação é a metade da encontrada para a condição sem nitretação. A resistência à corrosão avaliada por ensaio de imersão em uma solução aquosa com 3% FeCl3 por 88 horas mostra que o comportamento após a LTPN é igual ao da condição não nitretada, enquanto para a CPN a perda de massa é superior e, portanto, menor que a observada para a LTPN. A precipitação de nitretos de cromo, durante a nitretação CPM, conduz ao empobrecimento de cromo na matriz metálica. Os resultados mostram que é possível promover o endurecimento superficial do aço tipo 410S por nitretação a baixa temperatura com melhoria nas propriedades tribológicas sem comprometimento da resistência à corrosão.

Palavras-chave

Nitretação sob plasma; Aço inoxidável; Endurecimento; Desgaste; Corrosão

References

1 Larisch B, Brusky U, Spies H-J. Plasma nitriding of stainless steels at low temperatures. Surface and Coatings Technology. 1999;116–119:205-211.

2 Czerwiec T, Renevier N, Michel H. Low-temperature plasma-assisted nitriding. Surface and Coatings Technology. 2000;131:267-277.

3 Venkatesan K, Subramanian C, Green LK. Influence of chromium content on corrosion of plasma-nitrided steels. Corrosion. 1997;53:507-515.

4 Wang L, Xu X, Yu Z, Hei Z. Low pressure plasma arc source ion nitriding of austenitic stainless steel. Surface and Coatings Technology. 2000;124:93-96.

5 Fewell M, Mitchell D, Priest J, Short K, Collins G. The nature of expanded austenite. Surface and Coatings Technology. 2000;131:300-306.

6 Christiansen T, Somers MAJ. Controlled dissolution of colossal quantities of nitrogen in stainless steel. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2006;37:675-682.

7 Mingolo N, Tschiptschin AP, Pinedo CE. On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel. Surface and Coatings Technology. 2006;201:4215-4218.

8 Bell T. Current status of supersaturated surface engineered S-phase materials. Key Engineering Materials. 2008;373- 374:289-295.

9 Dong H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. International Materials Reviews. 2010;55:65-98.

10 Kim S, Yoo J, Priest J, Fewell M. Characteristics of martensitic stainless steel nitrided in a low-pressure RF plasma. Surface and Coatings Technology. 2003;163-164:380-385.

11 Xi Y-T, Liu D-X, Han D. Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature. Surface and Coatings Technology. 2008;202:2577-2583.

12. Xi Y, Liu D, Han D, Han ZF. Improvement of mechanical properties of martensitic stainless steel by plasma nitriding at low temperature. Acta Metall Sin. 2008;21:21-29.

13 Pinedo CE, Magnabosco R. Mecanismos de nitretação sob plasma do aço inoxidável martensítico AISI 420 nitretado a alta e baixa temperatura. Tecnologica em Metalurgia, Materiais e Mineração. 2015;12:257-264.

14 Pinedo CE, Larrotta SIV, Nishikawa AS, Dong H, Li X-Y, Magnabosco R, et al. Low temperature active screen plasma nitriding of 17-4 PH stainless steel. Surface and Coatings Technology. 2016;308:189-194.

15 Chiu LH, Su YY, Chen FS, Chang H. Microstructure and properties of active screen plasma nitrided duplex stainless steel. Materials and Manufacturing Processes. 2010;25:316-323.

16 Nagatsuka K, Nishimoto A, Akamatsu K. Surface hardening of duplex stainless steel by low temperature active screen plasma nitriding. Surface and Coatings Technology. 2010;205:S295-S299.

17 Sousa RRM, Araújo FO, Costa JAP, Oliveira AM, Melo MS, Alves C Jr. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4. Materials Research. 2012;15:260-265.

18 Pinedo CE, Varela LB, Tschiptschin AP. Low-temperature plasma nitriding of AISI F51 duplex stainless steel. Surface and Coatings Technology. 2013;232:839-843.

19 Christiansen T, Somers MAJ. Decomposition kinetics of expanded austenite with high nitrogen contents. Z. Met. 2006;97:79-88.

20 Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992;7:1564-1583.

21 Recco AAC, Viáfara CC, Sinatora A, Tschiptschin AP. Energy dissipation in depth-sensing indentation as a characteristic of the nanoscratch behavior of coatings. Wear. 2009;267:1146-1152.

22 Câmara Cozza R, Rodrigues LC, Geraldo Schön C. Analysis of the micro-abrasive wear behavior of an iron aluminide alloy under ambient and high-temperature conditions. Wear. 2015;330–331:250-260.

23 Espitia LA, Dong H, Li XY, Pinedo CE, Tschiptschin AP. Scratch test of active screen low-temperature plasma nitrided AISI 410 martensitic stainless steel. Wear. 2017;376–377:30-36.

24 Tschiptschin AP, Varela LB, Pinedo CE, Li XY, Dong H. Development and microstructure characterization of single and duplex nitriding of UNS S31803 duplex stainless steel. Surface and Coatings Technology. 2017;327:83-92.

25 Pinedo CE, Varela LB, Tschiptschin AP. Low-temperature plasma nitriding of AISI F51 duplex stainless steel. Surface and Coatings Technology. 2013;232:839-843.

26 Kim SK, Yoo JS, Priest JM, Fewell MP. Characteristics of martensitic stainless steel nitriding a low-pressure RF plasma. Surface and Coatings Technology. 2003;163–164:380-385.

27 Christiansen TL, Somers MAJ. Stress and composition of carbon stabilized expanded austenite on stainless steel. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2009;40:1791-1798.

28 Cheng L. Phase transformations in iron-based interstitial martensites [thesis]: Delft University; 1990. https:// repository.tudelft.nl/islandora/object/uuid:bbe1aa0b-a680-4d94-9ec9-b7ed33200b6e?collection=research

29 Li Y, He Y, Xiu JJ, Wang W, Zhu YJ, Hu B. Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding. Surface and Coatings Technology. 2017;329:184-192.

30 Pinedo CE, Monteiro WA. Characterization of plasma nitrided case on martensitic stainless steel by scanning electron microscopy. Acta Microscópica. 2001;1:315-316.

31 Sousa RRM, Araújo FO, Costa JAP, Oliveira AM, Melo MS, Alves C Jr. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4. Materials Research. 2012;15:260-265.

32 Espitia LA, Varela L, Pinedo CE, Tschiptschin AP. Cavitation erosion resistance of low temperature plasma nitrided martensitic stainless steel. Wear. 2013;301:449-456.

33 Pinedo CE, Larrotta SIV, Nishikawa AS, Dong H, Li XY, Magnabosco R et al. Low temperature active screen plasma nitriding of 17–4 PH stainless steel. Surface and Coatings Technology. 2016;308:189-194.

34 Tuckart W, Gregorio M, Iurman L. Sliding wear of plasma nitrided AISI 405 ferritic stainless steel. Surface Engineering. 2010;26:185-190.

35 Pinedo CE, Monteiro WA. Surface hardening by plasma nitriding on high chromium alloy steel. Journal of Materials Science Letters. 2001;20:147-149.

36 Pinedo CE, Monteiro WA. On the kinetics of plasma nitriding a martensitic stainless steel Type AISI 420. Surface and Coatings Technology. 2004;179:119-123.

37 Pinedo CE. Nitretação por plasma de aços inoxidáveis. Metals and Materials. 2002;60:162-164.

38 Espitia LA, Dong H, Li XY. Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel. Wear. 2015;332-333:1070-1079.

39 Jack DH. Nitriding. In: Iron and Steel Institute, editor. Heat Treatment’73. London: The Metal Society; 1973. p. 39-50.

40 Lightfoot J, Jack DH. Kinetics of nitriding with and without compound layer formation. In: Iron and Steel Institute, editor. Heat Treatment’73. London: The Metal Society; 1973. p. 59-65.

41 Pinedo CE, Monteiro WA. Influence of heat treatment and plasma nitriding parameters on hardening an AISI 420 martensitic stainless steel. In: Proceedings of the 18th International Federation for Heat treatment and Surface Engineering. Rio de Janeiro. Switzerland: IFHTSE 2010. p. 4750-4757.

42 Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear. 2000;246:1-11.

43 Kamminga JD, Alkemade PFA, Janssen GCAM. Scratch test analysis of coated and uncoated nitrided steel. Surface and Coatings Technology. 2004;177–178:284-288.

44 Rovani AC, Breganon R, Souza GS, Brunatto SF, Pintaúde G. Scratch resistance of low-temperature plasma nitrided and carburized martensitic stainless steel. Wear. 2017;376–377:70-76.

45 Subhash G, Zhang W. Investigation of the overall friction coefficient in single-pass scratch test. Wear. 2002;252:123-134.

46 Hoy R, Kamminga JD, Janssen GCAM. Scratch resistance of CrN coatings on nitrided steel. Surface and Coatings Technology. 2006;200:3856-3860.

47 Trezona RI, Allsopp DN, Hutchings IM. Transition between two-body and three body abrasive wear: influence of test conditions in the microscale abrasive wear test. Wear. 1999;225–229:205-214.

48 Adachi K, Hutchings IM. Wear-mode mapping for the micro-scale abrasion test. Wear. 2003;255:23-29.

49 Cozza RC, Schon CG. Evidence of superposition between grooving abrasion and rolling abrasion. Tribology Transactions. 2015;58:875-881.

50 Calderon CDR, Cabrera LIF, Ramíres IC. A novel tester to examine micro-abrasion of materials in oscillating sliding contact – The case study of a total knee replacement biomaterial. Wear. 2021;476:203661.

51 Varela LB, Umemura MT, Calderón-Hernández JW, Pinedo CE, Kolawole FO, Tschiptschin AP. Corrosion resistance of low-temperature and conventional plasma-citrided 410S ferritic-martensitic stainless steels. Materials Performance and Characterization. 2021;10(1):181-188.

52 Tschiptschin AP, Pinedo CE. Surface hardening of stainless steel. In: Singh A, editor. Stainless steels. London: IntechOpen; 2022. p. 65-96.

53 Umemura MT, Varela LB, Pinedo CE, Cozza RC, Tschiptschin AP. Assessment of tribological properties of plasma nitrided 410S ferritic-martensitic stainless steels. Wear. 2019;426-427:49-58.


Submitted date:
10/21/2022

Accepted date:
05/19/2023

647a4c03a953953a401b64c4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections