Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222840
Tecnologia em Metalurgia, Materiais e Mineração
Original Article

Employing the TOPSIS selection method to assess the use of Ti-6Al-4V ELI processed by additive manufacturing in hip implants

Empregando o método de seleção TOPSIS para avaliar o uso de Ti-6Al-4V  ELI processado por manufatura aditiva em implantes de quadril

Leonardo Contri Campanelli; Arthur Tafuri Fernandes; Danieli Aparecida Pereira Reis

Downloads: 1
Views: 482

Abstract

The processing of medical components of Ti-6Al-4V ELI typically includes forging and machining. Recently there has been a growing interest in additive manufacturing since this technology allows the production of customized components with high dimensional precision and minimum material loss. However, there are problems associated with additive manufacturing, such as the need to employ finishing methods and mainly the reduction of fatigue performance by internal defects and high surface roughness. This work aimed to evaluate the likelihood of using the Ti-6Al-4V ELI alloy processed by additive manufacturing in hip implants. A material selection method based on the weighting of characteristics was used considering solely aspects of mechanical properties. Hence, in a mechanical performance scenario, some processes involving additive manufacturing were found to be feasible for application in hip implants, for instance Directed Energy Deposition (DED) and Selective Laser Melting (SLM), both followed by machining.

Keywords

Materials selection; Titanium; Implant; Additive manufacturing

Resumo

O processamento de componentes médicos de Ti-6Al-4V ELI tipicamente inclui forjamento e usinagem. Recentemente tem havido um crescente interesse na manufatura aditiva, pois essa tecnologia permite a produção de componentes customizados com alta precisão dimensional e perda mínima de material. No entanto, existem problemas associados à manufatura aditiva, tais como a necessidade de empregar métodos de acabamento e principalmente a redução do desempenho à fadiga por defeitos internos e alta rugosidade superficial. Este trabalho teve como objetivo avaliar a probabilidade de utilização da liga Ti-6Al-4V ELI processada por manufatura aditiva em implantes de quadril. Foi utilizado um método de seleção de materiais baseado na ponderação de características considerando apenas aspectos de propriedades mecânicas. Assim, em um cenário de desempenho mecânico, alguns processos envolvendo manufatura aditiva mostraram-se viáveis para aplicação em implantes de quadril, por exemplo, Deposição com Energia Direcionada (DED) e Fusão Seletiva a Laser (FSL), ambos seguidos de usinagem.

Palavras-chave

Seleção de materiais; Titânio; Implante; Manufatura aditiva

References

1 Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Progress in Materials Science. 2009;54:397-425.

2 Liu S, Shin YC. Additive manufacturing of Ti-6Al-4V ELI alloy: a review. Materials & Design. 2019;164:107552.

3 Javaid M, Haleem A. Additive manufacturing applications in orthopaedics: a review. Journal of Clinical Orthopaedics and Trauma. 2018;9(3):202-206.

4 Jee D, Kang K. A method for optimal material selection aided with decision making theory. Materials & Design. 2000;21(3):199-206.

5. Korbyn A, Prystrom, J. A data pre-processing model for the TOPSIS method. Folia Economica Stetinensia. 2016:16(2):219-235.

6 Chede SJ, Adavadkar BR, Patil AS, Chhatriwala HK, Keswani MP. Material selection for design of powered hand truck using TOPSIS. International Journal of Industrial and Systems Engineering. 2021;39(2):236-246.

7 Ersen N, Peker H, Akyüz I. Selection of materials with entropy-topsis by considering technological properties of impregnated wood. Polímeros. 2022;32(4):e2022039.

8 American Society for Testing and Materials. ASTM F136: standard specification for wrought Titanium-6Aluminum4Vanadium ELI (Extra Low Interstitial) alloy for surgical implant applications (UNS R56401). West Conshohocken: ASTM; 2014.

9 Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. International Journal of Biomaterials. 2011;2011:836587.

10 Kumar P, Ramamurty U. High cycle fatigue in selective laser melted Ti-6Al-4V ELI. Acta Materialia. 2020;194:305- 320.

11 Jamshidi P, Aristizabal M, Kong W, Villapun V, Cox SC, Grover LM, et al. Selective laser melting of Ti-6Al-4V ELI: the impact of post-processing on the tensile, fatigue and biological properties for medical implant applications. Materials (Basel). 2020;13(12):2813.

12 Ono Y, Yuri T, Ogata T. Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature. In: AIP Conference Proceedings. New York: American Institute of Physics; 2014.

13 Nalla RK, Boyce BL, Campbell JP, Peters JO, Ritchie RO. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V ELI: Bimodal vs. lamellar structures. Metallurgical and Materials Transactions. 2002;33:899-918.

14 Milella PP. Fatigue and corrosion in metals. Milan: Springer; 2013.


Submitted date:
01/20/2023

Accepted date:
05/19/2023

64b7de3ea9539536111edcf3 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections