Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20232796
Tecnologia em Metalurgia, Materiais e Mineração
Original Article

Soluções adaptadas de baixo custo para o desenvolvimento de máquina de manufatura híbrida

Low-cost, adapted solutions for the hybrid manufacturing machine development

João Pedro Aguiar dos Santos; João Inácio Yutaka Ota; Pedro de Paula Lopes Macedo; Rômulo da Costa Delmondes; Marcelo Antônio Adad de Araújo

Downloads: 1
Views: 416

Resumo

O uso da tecnologia de manufatura híbrida permite o uso mais eficiente de material e a fabricação mais precisa de protótipos ao juntar os benefícios oriundos de diferentes tecnologias de manufatura. Porém, soluções exclusivamente voltadas para a manufatura híbrida apresentam alto custo de investimento. O uso conjunto de equipamentos existentes de manufatura aditiva, subtrativa e conformativa na manufatura híbrida poderia trazer uma redução considerável de custos. No entanto, equipamentos como impressoras 3D e máquinas CNC não estão preparadas para aplicações de manufatura híbrida, o que exige soluções adaptadas. O artigo apresenta o desenvolvimento de uma máquina de manufatura híbrida feita a partir da adaptação de uma fresadora CNC e de um conjunto extrusor em uma única estrutura mecânica. Tal estrutura é controlada por uma eletrônica embarcada de baixo custo com código aberto. Ambas as etapas de manufatura aditiva e subtrativa são gerenciadas por um único software de fatiamento 3D. Embora a solução adaptada de manufatura híbrida seja voltada para um ambiente acadêmico e de ensino de engenharia, ressalta-se que a adaptação de equipamentos já existentes para manufatura híbrida é também aplicável em outros contextos, como a fabricação de protótipos ou produtos em ambientes industriais.

Palavras-chave

Comando numérico computadorizado (CNC); Impressão 3D; Manufatura aditiva; Manufatura híbrida; Manufatura subtrativa; Prototipagem rápida

Abstract

Hybrid Manufacturing technology allows more efficient use of the materials and high-resolution rapid prototyping parts, blending the benefits of both additive and subtractive manufacturing. However, commercially available solutions yield high cost of acquisition. Nevertheless, while cost reduction is achievable by using existing tools of additive, subtractive, and conformal manufacture, off-the-shelf 3D printing and machining tools do not perform hybrid manufacturing natively. Therefore, adapted solutions are indeed necessary. The paper presents the development of a hybrid manufacturing machine based on existing CNC machining tool and extruder, both adapted to a circuit board printer and controlled by a unique management and slicing software for both additive and subtractive manufacturing. Although the presented prototype is a machine aimed for teaching and learning activities in engineering, hybrid manufacturing by the means of existing equipment in industry or fab labs is applicable as well.

Keywords

Computer numerical control (CNC); 3D printing; Additive manufacturing; Hybrid manufacturing; Subtractive manufacturing; Rapid prototyping

References

1 Jiménez M, Romero L, Domínguez IA, Espinosa MM, Domínguez M. Additive Manufacturing Technologies: an overview about 3D printing methods and future prospects. Complexity. 2019;2019:1-30. http://dx.doi. org/10.1155/2019/9656938.

2 Ahmed N. Direct metal fabrication in rapid prototyping: a review. Journal of Manufacturing Processes. 2019;42:167-191. http://dx.doi.org/10.1016/j.jmapro.2019.05.001.

3 Chua CK, Leong KF, An J. Introduction to rapid prototyping of biomaterials. In: Narayan R, editor. Rapid prototyping of biomaterials. Duxford: Woodhead Publishing; 2019. https://doi.org/10.1016/B978-0-08-102663- 2.00001-0

4 Pham DT, Gault RS. A comparison of rapid prototyping technologies. International Journal of Machine Tools & Manufacture. 1998;38(10-11):1257-1287. http://dx.doi.org/10.1016/S0890-6955(97)00137-5.

5 Chua CK, Chou SM, Wong TS. A study of the state-of-the-art rapid prototyping technologies. International Journal of Advanced Manufacturing Technology. 1998;14(2):146-152. http://dx.doi.org/10.1007/BF01322222.

6 Garg A, Tai K, Savalani MM. State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyping Journal. 2014;20(2):164-178. http://dx.doi.org/10.1108/RPJ-08-2012-0072.

7 Thomas DS, Gilbert SW. Costs and cost effectiveness of additive manufacturing: a literature review and discussion. Gaithersburg: NIST; 2014. http://dx.doi.org/10.6028/NIST.SP.1176.

8 Yamazaki T. Development of a hybrid multi-tasking machine tool: integration of additive manufacturing technology with CNC machining. Procedia CIRP. 2016;42:81-86. http://dx.doi.org/10.1016/j.procir.2016.02.193.

9 Cortina M, Arrizubieta JI, Ruiz JE, Ukar E, Lamikiz A. Latest developments in industrial hybrid machine tools that combine additive and subtractive operations. Materials (Basel). 2018;11(12):2583. http://dx.doi.org/10.3390/ma11122583.

10 Zhu Z, Dhokia V, Newman ST. A novel process planning approach for hybrid manufacturing consisting of additive, subtractive and inspection processes. In: International Conference on Industrial Engineering and Engineering Management. New York: IEEE; 2012. p. 1617-21. http://dx.doi.org/10.1109/IEEM.2012.6838020.

11 Rodriguez J, Ikonomov P, Choudhury AA. Development of a 3D Printer and CNC milling desktop machine for manufacturing labs. In: Annual Conference & Exposition Proceedings. Washington: ASEE; 2016. https://doi.org/10.18260/p.26788

12 Zhu Z, Dhokia VG, Nassehi A, Newman ST. A review of hybrid manufacturing processes – state of the art and future perspectives. International Journal of Computer Integrated Manufacturing. 2013;26(7):596-615. http://dx.doi.org/10.1080/0951192X.2012.749530.

13 Lee W, Wei C, Chung S-C. Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining. Journal of Materials Processing Technology. 2014;214(11):2366-2374. http://dx.doi.org/10.1016/j.jmatprotec.2014.05.004.

14 Mazak Corporation. INTEGREX i-400 AM [página da internet]. 2022 [acesso em 1 abr. 2022]. Disponível em: https://www.mazakusa.com/machines/integrex-i-400am

15 Brecher C, Jeschke S, Schuh G, Aghassi S, Arnoscht J, Bauhoff F, et al. Integrative production technology for high-wage countries. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 17-76. http://dx.doi.org/10.1007/978-3-642-21067-9_2.

16 Zivanovic ST, Popovic MD, Vorkapic NM, Pjevic MD, Slavkovic NR. An overview of rapid prototyping technologies using subtractive, additive and formative processes. FME Transactions. 2020;48(1):246-253. http://dx.doi.org/10.5937/fmet2001246Z.

17 Li L, Haghighi A, Yang Y. A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. Journal of Manufacturing Processes. 2018;33:150-160. http://dx.doi.org/10.1016/j.jmapro.2018.05.008.

18 Anzalone GC, Wijnen B, Pearce JM. Multi-material additive and subtractive prosumer digital fabrication with a free and open-source convertible delta RepRap 3-D printer. Rapid Prototyping Journal. 2015;21(5):506-519. http://dx.doi.org/10.1108/RPJ-09-2014-0113.

19 Kale A, Lakshman Kumar A, Murali Krishna Kumar M, Prakasah M. Optimization of hybrid manufacturing process parameters by using FDM in CNC machine. Materials Science and Engineering. 2018;402:012088. http://dx.doi.org/10.1088/1757-899X/402/1/012088.

20 Santos JPA, Delmondes RC, Araújo MAA, Ferreira VR. Investigação e aperfeiçoamento de um sistema de impressão 3D e fresagem intercambiável. In: Brazilian Technology Symposium. Cham: Springer; 2018. p. 102-106.

21 Santos JPA, Ota JIY. Proposta multimetodológica de ensino para a disciplina de design de placas de circuito impresso. In: Congresso Brasileiro de Educacção em Egenharia. Brasília: ABENGE; 2020. https://doi.org/10.37702/COBENGE.2020.3079.

22 Guedes LGR, Santos JPA. Diagnóstico e avaliação da aplicação de metodologias ativas nos cursos de engenharia da pontifícia universidade Católica de Goiás e da Universidade Federal de Goiás. Brazilian Journal of Development. 2019;5(9):16897-16910. http://dx.doi.org/10.34117/bjdv5n9-219.

23 Guedes LGR, Santos JPA. Clustered social representation of active methodologies in engineering courses a case study at Goiás State, Brazil. International Journal on Alive Engineering Education. 2019;6:129-138. http://dx.doi.org/10.5216/ijaeedu.v6.60180.

4 Liu G, Zhang X, Chen X, He Y, Cheng L, Huo M, et al. Additive manufacturing of structural materials. Materials Science and Engineering: R: Reports, 145, 100596. http://dx.doi.org/10.1016/j.mser.2020.100596.

25 Patel A, Taufik M. Extrusion-based technology in additive manufacturing: a comprehensive review. Arabian Journal for Science and Engineering. 2022. http://dx.doi.org/10.1007/s13369-022-07539-1.

26 Frazier WE. Metal additive manufacturing: a review. Journal of Materials Engineering and Performance. 2014;23(6):1917-1928. http://dx.doi.org/10.1007/s11665-014-0958-z.

27 Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chemical Society Reviews. 2016;45(10):2740-2755. http://dx.doi.org/10.1039/C5CS00714C.

28 Müller M, Wings E. An architecture for hybrid manufacturing combining 3D printing and CNC machining. International Journal of Manufacturing Engineering. 2016;2016:1-12. http://dx.doi.org/10.1155/2016/8609108.

29 Oropallo W, Piegl LA. Ten challenges in 3D printing. Engineering with Computers. 2016;32(1):135-148. http://dx.doi.org/10.1007/s00366-015-0407-0.

30 Dizon JRC, Gache CCL, Cascolan HMS, Cancino LT, Advincula RC. Post-processing of 3D-printed polymers. Technologies. 2021;9(3):61. http://dx.doi.org/10.3390/technologies9030061.

31 Espalin D, Muse DW, MacDonald E, Wicker RB. 3D Printing multifunctionality: structures with electronics. International Journal of Advanced Manufacturing Technology. 2014;72(5-8):963-978. http://dx.doi.org/10.1007/s00170-014-5717-7.

32 Kazanas HC, Lerwick LP. Manufacturing processes technology. In: Mayers RA, editor. Encyclopedia of physical science and technology. Cambridge: Academic Press; 2003. p. 95-119. http://dx.doi.org/10.1016/B0-12-227410-5/00402-6.

33 Sathish K, Kumar SS, Magal RT, Selvaraj V, Narasimharaj V, Karthikeyan R, et al. A comparative study on subtractive manufacturing and additive manufacturing. Advances in Materials Science and Engineering. 2022;2022:1-8. http://dx.doi.org/10.1155/2022/6892641.

34 Du W, Bai Q, Zhang B. A novel method for additive/subtractive hybrid manufacturing of metallic parts. Procedia Manufacturing. 2016;5:1018-1030. http://dx.doi.org/10.1016/j.promfg.2016.08.067.

35 Silveira JVBD. Síntese e caracterização de compósitos ABS/Polipirrol produzidos via manufatura aditiva através da técnica FDM [dissertação]. Recife: Universidade Federal de Pernambuco; 2022.

36 Redwood B, Schoöffer F, Garet B. The 3D printing handbook: technologies, design and applications. Amsterdam: 3D Hubs; 2017.

37 DeBoer B, Nguyen N, Diba F, Hosseini A. Additive, subtractive, and formative manufacturing of metal components: a life cycle assessment comparison. International Journal of Advanced Manufacturing Technology. 2021;115(1-2):413-432. http://dx.doi.org/10.1007/s00170-021-07173-5.

38 Chu W, Kim C, Lee H, Choi J, Park J, Song J, et al. Hybrid manufacturing in micro/nano scale: a review. International Journal of Precision Engineering and Manufacturing-Green Technology. 2014;1(1):75-92. http://dx.doi.org/10.1007/s40684-014-0012-5.

39 Rossi A, Lanzetta M. Integration of hybrid additive/subtractive manufacturing planning and scheduling by metaheuristics. Computers & Industrial Engineering. 2020;144:106428. http://dx.doi.org/10.1016/j.cie.2020.106428.

40 Korkmaz ME, Waqar S, Garcia-Collado A, Gupta MK, Krolczyk GM. A technical overview of metallic parts in hybrid additive manufacturing industry. Journal of Materials Research and Technology. 2022;18:384-395. http://dx.doi.org/10.1016/j.jmrt.2022.02.085.

41 Chen W, Xu L, Zhao L, Han Y, Wang X, Hu C, et al. Application of hybrid additive manufacturing technology for performance improvement of martensitic stainless steel. Additive Manufacturing. 2022;51:102648. http://dx.doi.org/10.1016/j.addma.2022.102648.

42 Ren L, Sparks T, Ruan J, Liou F. Integrated process planning for a multiaxis hybrid manufacturing system. Journal of Manufacturing Science and Engineering. 2010;132(2):021006. http://dx.doi.org/10.1115/1.4001122.

43 Nau B, Roderburg A, Klocke F. Ramp-up of hybrid manufacturing technologies. CIRP Journal of Manufacturing Science and Technology. 2011;4(3):313-316. http://dx.doi.org/10.1016/j.cirpj.2011.04.003.

44 Manogharan G, Wysk RA, Harrysson OLA. Additive manufacturing-integrated hybrid manufacturing and subtractive processes: Economic model and analysis. International Journal of Computer Integrated Manufacturing. 2016;29(5):473-488. http://dx.doi.org/10.1080/0951192X.2015.1067920.

45. Tao Y, Yin Q, Li P. An additive manufacturing method using large-scale wood inspired by laminated object manufacturing and plywood technology. Polymers. 2021;13(1):144. https://doi.org/10.3390/polym13010144.

46 Lalegani Dezaki M, Serjouei A, Zolfagharian A, Fotouhi M, Moradi M, Ariffin MKA, et al. A review on additive/subtractive hybrid manufacturing of directed energy deposition (DED) process. Advanced Powder Materials, 1(4), 100054. http://dx.doi.org/10.1016/j.apmate.2022.100054

47 Delmondes R, Rodrigues L. Cnc intercambiável aplicada a confecção de placas de circuito impresso. [dissertação]. Goiânia: Pontifícia Universidade Católica de Goiás; 2016.

48 Marlin. Marlin Versão 1.1.8 [página da internet]. GitHub; 2017 [acesso em 1 abr. 2022]. Disponível em: https://github.com/MarlinFirmware/Marlin.

49 Simplifly3D V4 [página da internet]. 2017 [acesso em 1 abr. 2022]. Disponível em: https://www.simplify3d.com.

50 Aguiar dos Santos JP. Hybrid Machine [página da internet]. GitHub; 2020 [acesso em 1 abr. 2022]. Disponível em: https://github.com/JoaoPedroAguiar/Hybrid_Machine.

51 Guo J, Rao Q, Xu Z. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound. Journal of Hazardous Materials. 2008;153(1-2):728-734. http://dx.doi.org/10.1016/j. jhazmat.2007.09.029.

52 Hsieh CT. Developing low cost and smart laser-based paper cutter based on open source 3D printer. In: International Conference on Advanced Manufacturing. New York: IEEE; 2019. p. 103-112. https://doi.org/10.1109/ AMCON.2018.8614958.

53 Ziegler JG, Nichols NB. Optimum settings for automatic controllers. Journal of Fluids Engineering. 1942;64(8):759-765. http://dx.doi.org/10.1115/1.4019264.


Submitted date:
05/30/2023

Accepted date:
11/08/2023

6568e03aa95395041b60c2c3 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections