Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20232854
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Incorporação de nanopartículas de prata em Zamac 5 anodizado

Incorporation of silver nanoparticles in anodized Zamac 5

Ben-hur Riedi da Silva; Sandra Raquel Kunst; Luana Góes Soares; Tamires Lovato; Guilherme José Schneider; Débora Rech Volz; Ana Luiza Ziulkoski; Juliane Deise Fleck; Cláudia Trindade Oliveira

Downloads: 0
Views: 206

Resumo

O Zamac é uma liga de zinco, alumínio, magnésio e cobre, amplamente utilizada para produzir objetos de uso comum, como maçanetas, torneiras e corrimões. Esses objetos são potenciais mecanismos de transmissão de vírus e bactérias em locais com alto trânsito de pessoas. Nesse sentido, diversos estudos mostram que nanopartículas de prata (AgNPs) possuem espectro antimicrobiano, e podem inertizar agentes virais e bacterianos. Portanto, este trabalho trata da incorporação de nanopartículas de prata em amostras de Zamac 5, anodizadas e seladas. Para tanto, as amostras de Zamac 5 foram anodizadas em 0,3 M de ácido oxálico, e posteriormente seladas (por 15 e 30min) em extrato vegetal a base de Psidium guajava L. + 0,1 mM de nitrato de prata (AgNO3). As amostras foram analisadas quanto à morfologia e mapeamento químico por meio de Microscópio Eletrônico de Varredura (MEV). Além disso, foram realizados ensaios de crescimento bacteriano com Escherichia coli, Staphylococcus aureus e Pseudomonas aeruginosa nas amostras de Zamac 5. Os resultados mostraram que houve incorporação de prata (Ag) em formato de partículas e aglomerados de partículas, dispostas homogeneamente na superfície das amostras. Contudo, o aumento do tempo de selagem, em extrato vegetal contendo AgNO3, das amostras de Zamac 5 anodizadas, reduziu (30% em média) a formação do biofilme de Pseudomonas aeruginosa na análise do comportamento antimicrobiano.

Palavras-chave

Zamac 5; Incorporação; Nanopartículas de prata; Selagem

Abstract

Zamak is a non-ferrous alloy, with considerable resistance to mechanical efforts. The alloy is widely used to produce objects in common use, such as door handles, faucets and handrails. These objects are potential transmission mechanisms for viruses and bacteria in places with high traffic of people. In this sense, several studies show that silver nanoparticles (AgNPs) have an antimicrobial spectrum. The objective of this work was to incorporate silver nanoparticles in Zamak 5 samples, anodized and sealed. Thus, the Zamak 5 samples were anodized in 0.3 M oxalic acid, and subsequently sealed in a plant extract based on Psidium guajava L. + 0.1 mM silver nitrate (AgNO3). Morphological analyzes and chemical mapping using Scanning Electron Microscope (SEM) were performed to evaluate the incorporation mechanisms. In addition, bacterial growth assays were performed with Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The results show that there was incorporation of silver (Ag) in the form of particles and agglomerates of particles, homogeneously arranged on the surface of the samples. However, it is concluded that the incorporation of silver element particles (Ag) in anodized Zamak 5, with the increase in the time of sealing the samples in plant extract, showed a reduction (30% on average) of the biofilm formed by Pseudomonas aeruginosa in the analysis of antimicrobial behavior.

Keywords

Zamak 5; Embedding; Silver nanoparticles; Sealing

Referências

1 International Zinc Association. Engineering in Zinc, today’s answer. Durham: IZA; 2020.

2 American Society for Testing and Materials. ASTM B240-13: standard specification for Zinc and Zinc-Aluminum (ZA) alloys in ingot form for foundry and die castings. West Conshohocken: ASTM International; 2013.

3 Boss A. Processo de cromação do Zamac: discussão, inovações, tendências e otimização do processo. Revista Tratamento de Superfícies. 2013;180:28-37.

4 Milcharek FR, Kunst SR, Oliveira CT, Hernandez PCJ. Surface characterization of anodized Zamac 5. Research, Social Development. 2022;16:e61111637702.

5 Dienstmann FK, Fuhr LT, Scheffel LF, Carone CLP, Morisso FDP, Schneider EL, et al. Tratamento térmico em Zamac visando diminuir defeitos de porosidade. Tecnologica em Metalurgia, Materiais e Mineração. 2021;18:e2070.

6 Fuhr L, Bianchin A, Vecchia F, Morisso FDP, Moura ÂBD, Martins RM, et al. Influência dos defeitos de solidificação na resistência à corrosão do Zamac 5 obtido por injeção sob pressão. Matéria. 2020;25(2):e12630.

7 Su Z, Zhou W. Porous anodic metal oxides. Science Foundation in China. 2008;16(1):16-36.

8 Rashid K, Khadom A. Sulfosalicylic/oxalic acid anodizing process of 5854 aluminum-magnesium alloy: influence of sealing time and corrosion tendency. Results in Chemistry. 2022;4:100289.

9 Peng Z, Wu D, Wang W, Tan F, Wang X, Chen J, et al. Effect of metal ion doping on ZnO nanopowders for bacterial inactivation under visible-light irradiation. Powder Technology. 2017;315:73-80.

10 Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. 2009;145(1-2):83-96.

11 Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances. 2013;31(2):346-356.

12 Klabunde KJ. Nanoscale materials in chemistry. New York: Wiley Interscience; 2001. 287 p.

13 Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C. Synthesis and study of silver nanoparticles. Journal of Chemical Education. 2007;84(2):322-325.

14 Bianchin ACV, Maldaner GR, Fuhr LT, Beltrami LVR, Malfatti CF, Rieder ES, et al. A model for the formation of niobium structures by anodization. Materials Research. 2017;20(4):1010-1023.

15 Costa CD. Selagem de Zamac anodizado [trabalho de conclusão de curso]. Novo Hamburgo: Universidade Feevale; 2022.

16 Fernandes M, Kunst SR, Morisso FDP, Carús LA, Ziulkoski AL, Oliveira CT. Inserção de nanocargas de prata em superfície de titânio anodizado. Research, Social Development. 2022;11(7):e13711729690.

17 Di H, Qiaoxia L, Yujie Z, Jingxuan L, Yan W, Yinchun H, et al. Ag nanoparticles incorporated tannic acid/ nanoapatite composite coating on Ti implant surfaces for enhancement of antibacterial and antioxidant properties. Surface and Coatings Technology. 2020;399:126169.

18 Ono S, Asoh H. Mechanism of hot water sealing of anodic films formed on aluminum. Corrosion Science. 2021;181:109221.

19 Zhu P, Ma Y, Li K, Liang Z, Yang B, Huang W, et al. Sealing of anodized AA2099-T83 Al-Cu-Li alloy with layered double hydroxides for high corrosion resistance at reduced anodic film thickness. Surface and Coatings Technology. 2020;394:125852.

20 Kunst SR, Bianchin ACV, Mueller LT, Santana JA, Volkmer TM, Morisso FDP, et al. Model of anodized layers formation in Zn-Al (Zamak) aiming to corrosion resistance. Journal of Materials Research and Technology. 2021;12:831-847.

21 Flores CY, Diaz C, Rubert A, Benítez GA, Moreno MS, Mele MAFL, et al. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces: antibacterial effect on Pseudomonas aeruginosa. Journal of Colloid and Interface Science. 2010;350(2):402-408.

22 Prié H, Meyssonnier V, Kerroumi Y, Heym B, Lidove O, Marmor S, et al. Pseudomonas aeruginosa prosthetic jointinfection outcomes: prospective, observational study on 43 patients. Frontiers in Medicine. 2022;9:1039596.

23 Moser C, Jensen PO, Thomsen K, Kolpen M, Rybtke M, Lauland AS, et al. Immune responses to pseudomonas aeruginosa biofilm infections. Frontiers in Immunology. 2021;12:625597.


Submetido em:
27/03/2023

Aceito em:
04/09/2023

654e63f9a95395244362eff3 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections