Corrosion and tribocorrosion behavior of plasma nitrided AA7075 - T651
Letícia Oliveira Rocha; Maria Gabriela Galvão Camarinha; Gislene Valdete Martins; Ihsan Çaha; Alexandra Alves; Renata Jesuina Takahashi; Fatih Toptan; Danieli Aparecida Pereira Reis
Abstract
The 7075 aluminum alloy in T651 presents interesting properties in high stressed applications, however, it has low surface properties of hardness and chemical stability. Plasma nitriding is an alternative method of raising surface hardness, fatigue resistance, wear and corrosion of alloys. In this work the corrosion and tribocorrosion behavior of AA7075 - T651 with plasma nitriding treatment were studied in comparison untreated alloy. Corrosion behavior was investigated in 3.5 wt.% NaCl solution at room temperature performing potentiodynamic polarization test and electrochemical impedance spectroscopy. Tribocorrosion behavior was investigated using a ball-on-plate tribometer, against an alumina ball, under 1 N normal load and 1 Hz frequency in 3.5 wt.% NaCl solution at room temperature. The corrosion results showed that both conditions exhibited pitting corrosion that occured at corrosion potential. The plasma nitrided alloy presented a concentrated and consequently accelerated corrosion process in the fault regions of the layer formed and the formation of a layer of corrosion products that can act as extra protection. The tribocorrosion results for plasma nitrided alloy indicated a slightly more stable behavior, showing no significant changes in the electrochemical potential during the tribocorrosion test, together with a slightly lower volume and rate of wear.
Keywords
References
1 Brandt DA, Warner JC. Metallurgy fundamentals: ferrous and nonferrous. Illinois: The Goodheart-willcox Company; 2009.
2 Moniz BJ. Metallurgy. Illinois: American Technical Publishers; 2007.
3 Hatch JE. Aluminum: properties and physical metallurgy. Ohio: American Society for Metals; 1984.
4 Pinho JSR, Campanelli LC, Reis DAP. Case study on the failure analysis of turbojet compressor blades. Tecnologica em Metalurgia, Materiais e Mineração. 2022;19:e2760. http://dx.doi.org/10.4322/2176-1523.20222760.
5 Rocha EG, Camarinha MGG, Reis DAP. Análise fractográfica da liga AA 7075-T6 submetida à fadiga na condição de tratamento RRA e nitretada a plasma. Matéria (Rio de Janeiro). 2023;28(1):e20220305. http://dx.doi. org/10.1590/1517-7076-RMAT-2022-0305.
6 International ASM. ASM Handbook. Vol. 2: Properties and selection: Nonferrous alloys and special-purpose materials. West Conshohocken: ASM International; 1992.
7 Dowling NE. Mechanical behaviour of materials: engineering methods for deformation, fracture, and fatigue. EUA: Person Prentice Hall; 2007.
8 Moradshahi M, Tavakoli T, Amiri S, Shayeganmehr S. Plasma nitriding of Al alloys by DC glow discharge. Surface and Coatings Technology. 2006;201:567-574. http://dx.doi.org/10.1016/j.surfcoat.2005.12.002.
9 Reis DAP, Couto AA, Domingues NI Jr, Hirschmann AC, Zepka S, Moura C No. Effect of artificial aging on the mechanical properties of an aerospace aluminum Alloy 2024. Defect and Diffusion Forum. 2012;326-328;193-198. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.193.
10 Camarinha MGG, Campanelli LC, Barboza MJR, Reis L, Couto AA, Reis DAP. Fatigue behavior of notched and unnotched 7075-T6 aluminum alloy subjected to retrogression and re-aging (RRA) heat treatment and plasma nitriding. Theoretical and Applied Fracture Mechanics. 2023;127:104051. http://dx.doi.org/10.1016/j.tafmec.2023.104051.
11 Savonov GS, Camarinha MGG, Rocha LO, Barboza MJR, Martins GV, Reis DAP. Study of the influence of the RRA thermal treatment and plasma nitriding on corrosion behavior of 7075-T6 aluminum alloy. Surface and Coatings Technology. 2019;374:736-744. http://dx.doi.org/10.1016/j.surfcoat.2019.04.095.
12 Misak HE, Perel VY, Sabelkin V, Mall S. Corrosion fatigue crack growth behavior of 7075-T6 under biaxial tensiontension cyclic loading condition. Engineering Fracture Mechanics. 2013;106:38-48. http://dx.doi.org/10.1016/j. engfracmech.2013.04.004.
13 Huang Y, Ye X, Hu B, Chen L. Equivalent crack size model for pre-corrosion fatigue life prediction of aluminum alloy 7075-T6. International Journal of Fatigue. 2016;88:217-226. http://dx.doi.org/10.1016/j.ijfatigue.2016.03.035.
14 ASTM International. ASTM G3-14: Standard practice for conventions applicable to electrochemical measurements in corrosion testing. West Conshohocken: ASTM International; 2014.
15 Doni Z, Alves AC, Toptan F, Rocha LA, Buciumeanu M, Palaghian L, et al. Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys. Materials & Design. 2013;52:47-57. http://dx.doi.org/10.1016/j.matdes.2013.05.032.
16 Moreto J, Marino CEB, Bose Filho WW, Rocha LA, Fernandes JCS. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication. Corrosion Science. 2014;84:30-41. http:// dx.doi.org/10.1016/j.corsci.2014.03.001.
17 Schafer H, Stock HR. Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering. Corrosion Science. 2004;47:953-964. http://dx.doi.org/10.1016/j.corsci.2003.06.002.
18 Yazdani A, Soltanieh M, Aghajani H. Active screen plasma nitriding of Al using an iron cage: characterization and evaluation. Vacuum. 2015;122:127-134. http://dx.doi.org/10.1016/j.vacuum.2015.09.018.
19 Schäfer H, Stock HR. Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering. Corrosion Science. 2005;47:953-964. http://dx.doi.org/10.1016/j.corsci.2003.06.002.
20 McCafferty E, Natishan PM, Hubler GK. Pitting Behavior of Aluminum Ion Implanted with Nitrogen Corrosion. 1997;7(53):556-561. http://dx.doi.org/10.5006/1.3290287 19.
21 Casaux Y, Dollet A, Sibieude F, Berjoan R. Influence de l’orientation cristalline sur la résistance à l’oxydation de revêtements de AIN: étude in-situ par diffractométrie X. Journal de Physique IV. 1998;8:Pr5-249-Pr5-256. http:// dx.doi.org/10.1051/jp4:1998531.
22 Kendig MW, Mansfeld F. AC electrochemical impedance of a model pit. Journal of the Electrochemical Society. 1982;129:C318.
23 Mansfeld F, Lin S, Kim S, Shih H. Pitting and passivation of Al alloys and Al-based metal matrix composite. Journal of the Electrochemical Society. 1990;137:78-82. http://dx.doi.org/10.1149/1.2086442.
24 Orazem ME, Tribollet B. Eletrochemical impedance spectroscopy. New York: Wiley; 2008.
25 Cristóbal MJ, Figueroa R, Mera L, Pena G. Tribological behaviour of aluminium alloy AA7075 after ion implantation. Surface and Coatings Technology. 2012;209:124-130. http://dx.doi.org/10.1016/j. surfcoat.2012.08.050.
26 Mischler S. Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation. Tribology International. 2008;41:573-583. http://dx.doi.org/10.1016/j.triboint.2007.11.003.
27 Chen LH, Rigney DA. Transfer during unlubricated sliding wear of selected metal systems. Wear. 1985;105(1):47- 61. http://dx.doi.org/10.1016/0043-1648(85)90005-5.
28 Zhang A, Chena J, Shi W, Liu Z. Study on tribological behaviors of Fe+ ion implanted in 2024 aluminum alloy. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms. 2000;169(1-4):43-47. http://dx.doi.org/10.1016/S0168-583X(00)00014-8.
29 Szcancoski JC, Foerster CE, Serbena FC, Fitz T, Kreißig U, Richter E, et al. Mechanical and tribological properties of carbon and nitrogen consecutive ion implantation into aluminium. Surface and Coatings Technology. 2006;201(3- 4):1488-1494. http://dx.doi.org/10.1016/j.surfcoat.2006.02.016.
30 Mraied H, Cai W. The effects of Mn concentration on the tribocorrosion resistance of Al–Mn alloys. Wear. 2017;380-381:191-202. http://dx.doi.org/10.1016/j.wear.2017.03.017. 31 ASTM International. ASTM G133-05(2016): Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. West Conshohocken: ASTM International; 2016.
Submitted date:
05/26/2023
Accepted date:
11/08/2023