Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20233003
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Technological characterization of ceramic material originated from São José do Rio Pardo

Marcus Vinícius Fávero Alves; Maria Eduarda Simões Machado Oliveira; Guilherme Rodrigues de Paula da Silva; Carolina Del Roveri; Thamara Machado de Oliveira Ruellas; Sylma Carvalho Maestrelli

Downloads: 4
Views: 610

Abstract

This paper reports the characterization of a ceramic material originated from the hydrographic basin of the Fartura River, located in the city of São José do Rio Pardo, state of São Paulo, Brazil and, based on the results, proposes a destination for this material in the industry. The characterization was carried out using the techniques: X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Specific Surface Area (B.E.T.), Thermal Analysis (TG/DSC), Real Density by Pycnometry, Cation Exchange Capacity (CEC), Maximum Solids Concentration, Plasticity Index (PI), Green Density (GD), Apparent Density (AD), Apparent Porosity (AP) and Linear Shrinkage (LS). The results indicated that the material is mainly composed of kaolinite, muscovite mica and quartz, in addition to goethite, siderite and titanite. The presence of a higher iron and titania content favored obtaining red-toned bodies after ceramic firing. Based on these results, the high plasticity and other tests performed, the investigated material was identified as a clay material, with good potential for industrial use in the production of lower-cost red ceramics, such as tiles, bricks, and red-fired coatings.

Keywords

Ceramics; Fartura River; São José do Rio Pardo; Technological characterization; Clays

Referências

1 Odoma AN, Obaje NG, Omada JI, Idakwo SO, Erbacher J. Paleoclimate reconstruction during Mamu Formation (Cretaceous) based on clay mineral distributions. IOSR Journal of Applied Geology and Geophysics. 2013;1(5):40-46.

2 Angelo V. Preparation and catalytic properties of cationic and anionic clays. Catalysis Today. 1998;41(1-3):53-71. http://dx.doi.org/10.1016/S0920-5861(98)00038-8.

3 Aghris S, Laghrib F, Koumya Y, El Kasmi S, Azaitraoui M, Farahi A, et al. Exploration of a new source of sustainable aluminiosilicate clay minerals from marocco: mineralogical and phisico-chemical characterization for clear upcoming application. Journal of Inorganic and Organometallic Polymers. 2021;31:2925-2938. http://dx.doi. org/10.1007/s10904-021-01950-1.

4 Wang G, Ran L, Xu J, Wang Y, Ma L, Zhu R, et al. Technical development of characterization methods provides insights into clay mineral-water interactions: a comprehensive review. Applied Clay Science. 2021;206:106088. http://dx.doi.org/10.1016/j.clay.2021.106088.

5 Mc Connell RL, Abel DC. Environmental geology today. Burlington: Jones & Bartlett Publishers; 2013.

6 Sari MY, Kalpakli Y, Piskin S. Thermal behavior and dehydroxylation kinetics of naturally occurring sepiolite and bentonite. Journal of Thermal Analysis and Calorimetry. 2013;114(3):1191-1199. http://dx.doi.org/10.1007/s10973- 013-3152-x.

7 Janík R, Jóna E, Pavlík V, Lizák P, Mojumdar SC. Interactions of 2,5- and 3,5-dimethylphenols with co-exchanged montmorillonite. Journal of Thermal Analysis and Calorimetry. 2013;112(2):1083-1087. http://dx.doi.org/10.1007/ s10973-013-3012-8.

8 Moraes JDD, Bertolino SRA, Cuffni SL, Ducart DF, Bretzke PE, Leonardi GR. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purpose - a review. International Journal of Pharmaceutics. 2017;534(1-2):213-219. http://dx.doi.org/10.1016/j.ijpharm.2017.10.031.

9 Kooli F, Yan L, Tan SX, Zheng J. Organoclays from alkaline-treated acid-activated clays. Journal of Thermal Analysis and Calorimetry. 2013;115(2):1465-1475. http://dx.doi.org/10.1007/s10973-013-3454-z.

10 Arianpour AÇ, Arianpour F. Characterizarion, technological Properties, and ceramic applications of Kastamonu aluvial clay (Northern Turkey) in Building materials. Construction & Building Materials. 2022;356:129304. http://dx.doi.org/10.1016/j.conbuildmat.2022.129304.

11 Santos PS. Ciência e tecnologia de argilas. São Paulo: Editora Edgard Blucher Ltda; 1989.

12 Guggenheim S, Martin RT. Definition of clay and clay mineral: join report of the AIPEA nomenclature and CMS Nomenclature Committees. Clay Minerals. 1995;30(3):257-259. http://dx.doi.org/10.1180/claymin.1995.030.3.09.

13 Muhammed NS, Olayiwola T, Elkatatny S. A review on clay chemistry, characterization and shale inhibitors for water-based drilling fluids. Journal of Petroleum Science Engineering. 2021;206:109043. http://dx.doi.org/10.1016/j. petrol.2021.109043.

14 Santos RS. Interação entre características de argilas e parâmetros de processamento sobre propriedades tecnológicas de corpos cerâmicos. Cerâmica. 2017;63:361-368. http://dx.doi.org/10.1590/0366-69132017633672126.

15 Faleiros CA. Zoneamento geoambiental da bacia do Rio Fartura: abrangendo os municípios de São José do Rio Pardo - SP, São Sebastião da Grama-SP, Vargem Grande do Sul-SP e Águas da Prata - SP, na escala 1:50.000 [tese]. São Carlos: Programa de Pós-graduação em Engenharia Urbana, Centro de Ciências Exatas e Tecnologia, Universidade Federal de São Carlos; 2012.

16 ASTM International. ASTM C837-81. West Conshohocken: ASTM International. Standard Test Method for Methylene Blue Index

17 ASTM International. ASTM D423-66. West Conshohocken: ASTM International.Standard Method of Test for Liquid Limit of Soils

18 ASTM International. ASTM D424-59. West Conshohocken: ASTM International.Standard Test Method for Plastic Limit and Plasticity

19 ASTM International. ASTM C373-88. West Conshohocken: ASTM International.Standard Test Method for Water Absorption, Bulk

20 ASTM International. ASTM C326-09. West Conshohocken: ASTM International.Standard Test Method for Drying and Firing Shrinkages

21 Gadioli MCB, Borlini JCG, Caranassios A. Characterization of clay from Vale do Mulemba-ES. Materials Science Forum. 2008;591:487-492. http://dx.doi.org/10.4028/www.scientific.net/MSF.591-593.487.

22 Agrawal P, Misra SN, Sharma T. Beneficiation of Low Grande Kaolin by High Shear Agitation with Dispersant (HSD) pre-treatment for high yield and improved fired colour. Indian Ceramic Society. 2014;73(1):48-57. http://dx.doi.org/10.1080/0371750X.2014.890462.

23 Llop J, Notari MD, Barrachina E, Nebot I, Nunez I, Carda JB. Clay treatment to improve its color parameters to use them in porcelain stoneware production. La Sociedad Espanola de Ceramica y Vidrio. 2010;49:413-422.

24 Motta JFM, Luz AB, Baltar CAM, Bezerra MS, Cabral M Jr, Coelho JM. RMIs: argila plástica para cerâmica branca. In: CETEM/MCTI. Rochas e minerais industriais no Brasil: usos e especificações. 2.ed. Rio de Janeiro: CETEM/MCTI; 2008. p. 771-791.

25 Valezi DF, Carneiro CEA, Costa ACS, Paesano A Jr, Spadotto JC, Solórzano IG, et al. Weak ferromagnetic component in goethite (α-FeOOH) and its relation with microstructural characteristics. Materials Chemistry and Physics. 2020;246:122851. http://dx.doi.org/10.1016/j.matchemphys.2020.122851.

26 Vieira CMF, Soares TM, Sánchez R, Monteiro SN. Incorporation of granite waste in red ceramics. Materials Science and Engineering A. 2004;373:115-121. http://dx.doi.org/10.1016/j.msea.2003.12.038.

27 Dogan M, Dogan AU, Yesilyurt FL, Alaygut D, Buckner DI, Wurster DE. Baseline studies of the Clay Minerals Society special clays: specific surface area by the Brunauer Emmett Teller (BET) method. Clays and Clay Minerals. 2007;55(5):534-541. http://dx.doi.org/10.1346/CCMN.2006.0540108.

28 Mbey JA, Thomas F, Razafitianamaharavo A, Caillet C, Villiéras F. A comparative study of some kaolinites surface properties. Applied Clay Science. 2019;172:135-145. http://dx.doi.org/10.1016/j.clay.2019.03.005.

29 Meloni P, Carcangiu G, Delogu F. Specific surface area and chemical reactivity of quartz powders during mechanical processig. Materials Research Bulletin. 2012;47(1):146-151. http://dx.doi.org/10.1016/j. materresbull.2011.09.014.

30 Macedo RS, Menezes RR, Neves GA, Ferreira HC. Estudo de argilas usadas em cerâmica vermelha. Cerâmica. 2008;54:411-417. http://dx.doi.org/10.1590/S0366-69132008000400005.

31 Maia LJQ, Martins TA, Gesicki ALD, Salvetti AR. Caracterização Térmica de argilas da cidade de Costa Rica no Estado de Mato Grosso do Sul. In: Anais do 44° Congresso Brasileiro de Cerâmica; 2000; São Paulo, Brazil. São Paulo: ABCERAM. p. 06101-06110.

32 Oba RNM, Ifo GM, Madila EEN, Diamouangana FZM, Vila T, Foutou MP, et al. Characterization of the clay collected in the locality of dolisie in Congo-Brazzaville. Journal of Minerals and Materials Characterization and Engineering. 2022;10(2):93-105. http://dx.doi.org/10.4236/jmmce.2022.102007.

33 Menezes RR, Souto PM, Santana LML, Neves GA, Kiminami RHGA, Ferreira HC. Argilas bentoníticas de Cubati, Paraíba, Brasil: caracterização física-mineralógica. Cerâmica. 2009;55:163-169. http://dx.doi.org/10.1590/S0366- 69132009000200008.

34 National Center for Biotechnology Information. [National Library of Medicine]. Bethesda: National Center for Biotechnology Information; 2012 March 21, [2022 March 12].https://pubchem.ncbi.nlm.nih.gov/compound/Kaolin

35 Deng Y, Liu L, Velázquez ALB, Dixon JB. The determinative role of the exchange cation and layer-charge density of smectite on aflatoxin ADSORTION. Clays and Clay Minerals. 2012;60(4):374-386. http://dx.doi.org/10.1346/ CCMN.2012.0600404.

36 Ma C, Eggleton RA. Cation exchange capacity of kaolinite. Clays and Clay Minerals. 1999;47(2):174-180.


Submetido em:
25/09/2023

Aceito em:
28/11/2023

659da40fa953953774795616 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections