Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20233004
Tecnologia em Metalurgia, Materiais e Mineração
Original Article

Avaliação de amidos de milho alternativos na microflotação de hematita e quartzo

Evaluation of alternative corn starches in hematite and quartz microflotation

Débora Nascimento Sousa; Luís Alberto Silva; André Carlos Silva; Elenice Maria Schons Silva

Downloads: 0
Views: 379

Resumo

As jazidas de alta qualidade estão se tornando escassas globalmente, impulsionando as mineradoras a investir em tecnologias para aproveitar melhor os recursos minerais. Os minérios atuais são mais pobres e distribuídos em granulometrias mais finas, levando a um aumento no estudo dos reagentes usados na técnica de flotação mineral, uma das principais operações para concentrar minerais finos. O objetivo desse estudo foi comparar a aplicação de três tipos diferentes de amidos derivados do milho, variando suas dosagens, nos testes de microflotação de hematita e de quartzo. Os amidos de milho alternativos mostraram níveis mais elevados de amilopectina em comparação com o amido de milho convencional, sendo o HIPIX100 o que apresentou o teor mais alto desse componente. Observou-se que tanto o tipo quanto a dosagem do depressor, assim como a interação entre eles, tiveram influência estatisticamente significativa nas respostas de flotabilidade da hematita e do quartzo. Os resultados sugerem o HIPIX101 como o reagente mais promissor quando comparado com o amido de milho convencionalmente empregado na indústria mineral brasileira.

Palavras-chave

Microflotação; Hematita; Quartzo; Amido; Milho

Abstract

High-quality deposits are becoming scarce globally, driving mining companies to invest in technologies to make better use of mineral resources. Current ores are poorer and distributed in finer grain sizes, leading to an increase in the study of reagents used in the mineral flotation technique, one of the main operations to concentrate fine minerals. The objective of this study was to compare the application of three different types of corn-derived starches, varying their dosages, in hematite and quartz microflotation tests. Alternative corn starches showed higher levels of amylopectin compared to conventional corn starch, with HIPIX100 having the highest content of this component. It was observed that both the type and dosage of the depressant, as well as the interaction between them, had a statistically significant influence on the flotability responses of hematite and quartz. The results suggest HIPIX101 as the most promising reagent when compared to corn starch conventionally used in the Brazilian mineral industry.

Keywords

Microflotation; Hematite; Quartz; Starch; Corn

References

1 Mhonde NP, Wiese JG, McFadzen B. Comparison of collector performance for a South African and a Brazilian iron ore considering mineralogical characteristics. Minerals Engineering. 2017;113:55-67. http://dx.doi.org/10.1016/j. mineng.2017.08.006.

2 Sheppard E, Porter PW, Faust DR, Nagar R. A world of difference: encountering and contesting development. 2. ed. New York: The Guilford Press; 2016.

3 Filippov LO, Severov VV, Filippova IV. An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing. 2014;127:62-69. http://dx.doi.org/10.1016/j.minpro.2014.01.002.

4 National Minerals Information Center. 2020. Iron ore statistics and information. USA: USGS; 2020. [acesso em 9 abr. 2020]. Disponível em: https://minerals.usgs.gov/minerals/pubs/commodity/iron_ore/.

5 Lu L, editor. Developments in the physical separation of iron ore: magnetic separation. In: Xiong D, Lu L, Holmes RJ. Iron ore: mineralogy, processing & environmental sustaintability. Cambridge: Elsevier; 2015. p. 283-307.

6 Pattanaik A, Venugopal R. Investigation of adsorption mechanism of reagents (surfactants) system and its applicability in iron ore flotation – an overview. Colloid and Interface Science Communications. 2018;25:41-65. http://dx.doi.org/10.1016/j.colcom.2018.06.003.

7 Veloso CH, Filippov LO, Filippova IV, Ouvrard S, Araujo AC. Investigation of the interaction mechanism of depressants in the reverse cationic flotation of complex iron ores. Minerals Engineering. 2018;125:133-139. http:// dx.doi.org/10.1016/j.mineng.2018.05.031.

8 Nakhaei F, Irannajad M. Reagents types in flotation of iron oxide minerals: a review. Mineral Processing and Extractive Metallurgy. 2018;39(2):89-124. http://dx.doi.org/10.1080/08827508.2017.1391245.

9 Quast K. The use of zeta potential to investigate the pKa of saturated fatty acids. Advanced Powder Technology. 2016;27(1):207-214. http://dx.doi.org/10.1016/j.apt.2015.12.003.

10 Drzymala J. Characterization of materials by Hallimond tube flotation, Part 3. Maximum size of floating and interacting particles. International Journal of Mineral Processing. 1999;55(3):203-218. http://dx.doi.org/10.1016/

11 Araujo AC, Viana PRM, Peres AEC. Reagents in iron ores flotation. Minerals Engineering. 2005;18(2):219-224. http://dx.doi.org/10.1016/j.mineng.2004.08.023.

12 Silva EMS, Peres AEC, Silva AC, Florêncio DL, Caixeta VH. Sorghum starch as depressant in mineral flotation: part 2 – flotation tests. Journal of Materials Research and Technology. 2019;8(1):403-410. http://dx.doi. org/10.1016/j.jmrt.2018.04.002.

13 American Association of Cereal Chemistry. AACC Methods 08-21.01. Prediction of ash content in wheat flour – near-infrared method. St. Paul, Minnesota: AACC; 2000. 14 Guimarães P Jr, Silva AC, Silva EMS. Modelling the hydraulic entrainment phenomenon in microflotation. In: Proceedings of II International Symposium on Sustainable Mineral Processing; 2015; Antalya. Antalya: editora FLOGEN Star Outreach; 2015. p. 186-192.

15 Shrimali K, Yin X, Wang X, Miller JD. Fundamental issues on the influence of starch in amine adsorption by quartz. Colloids and Surfaces. A, Physicochemical and Engineering Aspects. 2017;522(5):642-651. http://dx.doi. org/10.1016/j.colsurfa.2017.03.031.

16 Weber FH, Collares-Queiroz FP, Chang YK. Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose. Food Science and Technology (Campinas). 2009;29:748-753.

17 Lu D, Yuhua W, Yuehua H, Wei S, Tao J, Yan L. Reverse flotation of ultrafine magnetic concentrate by using mixed anionic/cationic collectors. Physicochemical Problems of Mineral Processing. 2017;53(2):724-736. http://dx.doi. org/10.5277/ppmp170204.

18 Bustillos-Rodríguez JC, Tirado-Gallegos JM, Ordóñez-García M, Zamudio-Flores PB, Ornelas-Páz JJ, Acosta- Muñiz CH, et al. Physicochemical, thermal and rheological properties of three native corn starches. Food Science and Technology (Campinas). 2018;39:149-157. http://dx.doi.org/10.1590/fst.28117.

19 Matos SS, Alexandrino JS, Ferreira KC. Comportamento da amilopectina na flotação de minério de ferro. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Anais do Simpósio de Mineração; 2018; São Paulo. São Paulo: ABM; 2018. p. 1-12. https://doi.org/10.5151/2594-357X-31345.

20 Nheta W, Lubisi TP, Masemola S, Makhatha ME. Beneficiation of haematite from fluorspar tailings by reverse flotation. In: Proceedings of World Congress on Mechanical, Chemical, and Material Engineering; 2015; Spain. Spain: editora Avestia; 2015. p. 346-1-346-11.

21 Akhanazarova S, Kafarov V. Experiment optimization in chemistry and Chemical engineering. Moscow: Mir; 1982. 22 Pearse MJ. An overview of the use of chemical reagents in mineral processing. Minerals Engineering. 2005;18(2):139-149. http://dx.doi.org/10.1016/j.apt.2015.12.

23 Tester RF, Karkalas J, Qi X. Starch—composition, fine structure and architecture. Journal of Cereal Science. 2004;39:151-165. http://dx.doi.org/10.1016/j.jcs.2003.12.001.

24 Peres AEC, Correa MI. Depression of iron oxides with corn starches. Minerals Engineering. 1996;9(12):1227-1234. http://dx.doi.org/10.1016/S0892-6875(96)00118-5.

25 Yang L, Li C, Wang L. Dissolution of starch and its role in the flotation separation of quartz from hematite. Powder Technology. 2017;320:346-357. http://dx.doi.org/10.1016/j.powtec.2017.07.061.


Submitted date:
09/26/2023

Accepted date:
11/21/2023

6570c28ca953954c807d71b2 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections