Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20242848
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Microstructural evaluation of Inconel 625 weld cladding deposited by the GMAW and GMAW with rotating electrode processes

Avaliação microestrutural de revestimentos depositados com Inconel 625 pelos processos GMAW e GMAW com eletrodo rotativo

Jeferson Frederico Monteiro Costa, Jorge Carlos Ferreira Jorge, Luís Felipe Guimarães de Souza, Matheus Campolina Mendes, Humberto Nogueira Farneze, Hiron Akira Yamada Magalhães

Downloads: 1
Views: 370

Abstract

The microstructure of the Inconel 625 single layer weld cladding deposited by the conventional GMAW and GMAW with rotating electrode (GMAW-RE) processes on carbon steel is investigated. Metallographic characterization was performed on samples removed transversally to the weld deposit by optical and scanning electron microscopy equipped with energy dispersive spectrometry to evaluate the secondary phases. The results showed that the GMAW-RE process provided a more homogeneous penetration and a lower dilution rate than the GMAW process. As a consequence, a reduced Fe content and a refined austenitic microstructure with a lower amount of secondary phases were observed, factors that contribute greatly to better overlay performance. This superior performance indicates that the GMAW-RE process has the potential to be an advantageous alternative for Inconel 625 weld claddings.

Keywords

Nickel alloy 625; GMAW-RE process; Weld metal; Welding; Secondary phases

Resumo

Este trabalho realiza uma análise comparativa da microestrutura de revestimentos com Inconel 625 depositados em camada única pelos processos GMAW convencional e GMAW com eletrodo rotativo (GMAW-RE) sobre aço carbono. A caracterização metalográfica foi realizada em amostras removidas transversalmente ao depósito de solda por microscopia ótica e eletrônica de varredura equipada com espectrometria de energia dispersiva para avaliação de fases secundárias. Os resultados mostraram que o processo GMAW-RE permitiu a deposição com penetração mais homogênea e menor taxa de diluição que o processo GMAW. Como consequência, foi observado um teor do elemento Fe reduzido e uma microestrutura austenítica refinada com menor fração de fases secundárias, fatores que contribuem sobremaneira para um melhor desempenho do revestimento. Este melhor comportamento indica que o processo GMAW-RE tem potencial para ser uma alternativa vantajosa para soldagem de revestimento com Inconel 625.

Palavras-chave

 Liga de níquel 625; Processo GMAW-RE; Metal de solda; Soldagem; Fases secundárias

Referências

1 He K, Dong L, Wang Q, Zhang H, Li Y, Liu L, et al. Comparison on the microstructure and corrosion behavior of Inconel 625 cladding deposited by tungsten inert gas and cold metal transfer process. Surface and Coatings Technology. 2022;435:128245. http://doi.org/10.1016/j.surfcoat.2022.128245.

2 Evangeline A, Sathiya P. Dissimilar cladding of Ni–Cr–Mo super alloy over 316L austenitic stainless steel: morphologies and mechanical properties. Metals and Materials International. 2021;27:1155-1172. http://doi. org/10.1007/s12540-019-00440-x.

3 Singhal TS, Jain JK. GMAW cladding on metals to impart anti-corrosiveness: machine, processes, and materials. Materials Today: Proceedings. 2020;26(2):2432-2441. http://doi.org/10.1016/j.matpr.2020.02.518.

4 Moura BB, Souza D, Silva MO, Osorio AG. Effect of inert and active shielding gases in the corrosion resistance of IN 625 weld overlays. Journal of Materials Engineering and Performance. 2022;31:5886-5897. http://doi. org/10.1007/s11665-022-06651-5.

5 Mota CAM, Nascimento AS, Garcia DN, Silva DAS, Teixeira FR, Ferraresi VA. Nickel overlay deposited by MIG welding and cold wire MIG welding. Weld Int. 2018;32(9):588-598. http://doi.org/10.1080/09507116.2017.1347333.

6 Elango P, Balaguru S. Welding parameters for Inconel 625 overlay on carbon steel using GMAW. Indian Journal of Science and Technology. 2015;8(31):1-5.

7 Tabaie S, Greene T, Benoit MJ. Optimization of GMAW process parameters for weld overlay of Inconel 686 superalloy on low-carbon steel. International Journal of Advanced Manufacturing Technology. 2023;127:4769-4788. http://doi.org/10.1007/s00170-023-11798-z.

8 Norsok Standard. M-001, Materials selection. Oslo, Norway: Norsok Standard; 2004.

9 Petrobras. Technical Specification, Welding, I-ET-3010.00-1200-955-P4X-001. Petrobras; 2020. 74 p.

10 Araujo FPD, Mainier FB, Almeida BB. Evaluation of Ni-Cr-Mo alloy applied by weld overlay cladding on carbon steel for use in NaCl 3.5% mass solution. Proc. on Eng Sci. 2021;3(3):355-364. http://doi.org/10.24874/ PES03.03.011.

11 Mougo AL, Bentes Neto FMA, Garcia DN, Mota CAM. Effect of a cold wire on the metallurgical characteristics of nickel-based welds deposited by GMAW-CW. Transactions of the Indian Institute of Metals. 2020;73:2425-2434. http://doi.org/10.1007/s12666-020-02068-7.

12 Posch G, Scherleitner W, Rutzinger B, Schmitt G, Kamath V, Fiedler M. Manufacturing of nickel base-overlays: comparison of various welding Technologies under consideration of clad properties. In: Proceedings of the IIW International Congress IC 2014; 2014; New Delhi, India. New Delhi: International Institute of Welding; 2014. p. 1-8.

13 Volpi A, Serra G. Weld overlay of highly corrosion resistant nickel, chromium, molybdenum alloys UNS N06059 on low alloy equipment operating at high temperature. In: Proceedings of the ASME 2018 symposium on elevated temperature application of materials for fossil, nuclear, and petrochemical industries ETAM; 2018 April 3-5; Seattle, WA, USA. USA: ASME; 2018. 12 p. Paper ETAM2018-6715, V001T02A003. https://doi.org/10.1115/ ETAM2018-6715.

14 Rozmus-Górnikowska M, Kusiński J, Cempura G, Morgiel J. Microstructure and phase composition of transition zone between low alloyed steel boiler tube and an austenitic stainless steel weld overlay produced by cold metal transfer method. International Journal of Pressure Vessels and Piping. 2023:104951. https://doi.org/10.1016/j.ijpvp.2023.104951.

15 Babyak T, DeCenso V, Alexandrov B, Penso J. Application of low heat input gas metal arc welding for corrosion resistant weld overlays. Proc. of the ASME 2020 Pressure Vessels & Piping Conference, PVP2020; 2020 July 19-24;, USA. USA:American Society of Mechanical Engineers; 2020. p. 1-7. Paper PVP2020-21562.

16 Alvarães CP, Jorge JCF, Souza LFG, Araújo LS, Mendes MC, Farneze HN. Microstructure and corrosion properties of single layer Inconel 625 weld cladding obtained by the electroslag welding process. Journal of Materials Research and Technology. 2020;9(6):16146-16158. http://doi.org/10.1016/j.jmrt.2020.11.048.

17 Alvaraes CP, Sandes SS, Jorge JCF, Souza LFG, Araujo Mendes MC, Dille J. Microstructural characterization of Inconel 625 nickel-based alloy weld cladding obtained by electroslag welding process. Journal of Materials Engineering and Performance. 2020;29:3004-3015. http://doi.org/10.1007/s11665-020-04861-3.

18 Azevedo RO Jr, Costa JFM, Magalhães HAY, Jorge JCF, de Souza LFG, Mendes MC, et al. GMAW process with rotating electrode: an advanced alternative to improve cladding performance. Journal of Adhesion Science and Technology. 2023;38(10):1782-1793. http://doi.org/10.1080/01694243.2023.2270179.

19 Evangeline A, Sathyia P. Structure-property relationships of Inconel 625 cladding on AISI 316L substrate produced by hot wire (HW) TIG metal deposition technique. Materials Research Express. 2019;6:106539. http://doi. org/10.1088/2053-1591/ab350f.

20 Knerek R, Lemos GVB, Vander Voort G, Freitas DA, Haupt W, Landell R, Buzzatti D. Investigating an API X65 steel pipe cladded with alloy 625. Tecnolologia em Metalurgia, Materiais e Mineração. 2021;18:e2465. http://doi. org/10.4322/2176-1523.20212465.

21 Beaugrand VCM, Smith LS, Gittos MF. Hydrogen embrittlement of 8630M/625 subsea dissimilar joints: factors that influence the performance. In: Proceedings of the 22nd International Conference on Ocean, Offshore and Arctic Engineering; 2009 May 29-June 5, Honolulu, Hawaii. Honolulu: American Society of Mechanical Engineers; 2009. p. 1-10. Paper OMAE 2009-8003.

22 Beaugrand VCM, Gittos MF. Subsea dissimilar joints: failure mechanisms and opportunities for mitigation. In: Corrosion, 2009 March 22-26; Atlanta, Georgia, USA. Atlanta: The Welding Institute; 2009. p. 1-11. Paper 09305.

23 Farias FWC. Payão Fo JC, Azevedo LMB. Microstructural and mechanical characterization of the transition zone of 9%Ni steel cladded with Ni-based superalloy 625 by GTAW-HW. Metals. 2018;8(12):1007. https://doi.org/10.3390/ met8121007.

24 Monine VI, Gonzaga RS, Farias FWC, Passos EKD, Payão Fo JC. Study of mechanical behavior and X-ray elastic constants of nickel alloy weld overlay. Materials Research. 2019;22(4):e20180719. http://doi.org/10.1590/1980- 5373-MR-2018-0719.

25 Guo L, Zheng H, Liu S, Li Y, Xu X, Feng C. Formation quality optimization and corrosion performance of Inconel 625 weld overlay using hot wire pulsed TIG rare metal. Materials & Design. 2016;45(9):2219-2226.

26 Najafi M, Bakhshayesh MM, Farzadi A. Microstructure and phase analysis of multilayer Ni–Cr–Mo clad for corrosion protection. Transactions of the Indian Institute of Metals. 2021;74:1663-1672. http://doi.org/10.1007/ s12666-021-02256-z.

27 Xu L, Shao C, Tian L, Zhang J, Han Y, Zhao L, et al. Intergranular corrosion behavior of Inconel 625 deposited by CMT/GTAW. Corrosion Science. 2022;201:110295. http://doi.org/10.1016/j.corsci.2022.110295.

28 Guo L, Xiao F, Wang F, He Y, Wei W, Zhang Y. Microstructure and corrosion resistance of Inconel 625 overlay welded by pulsed TIG process. International Journal of Electrochemical Science. 2021;16:210418. http://doi. org/10.20964/2021.04.11.

29 Silveira GMS, Silva WA Fo, Costa JFM, Mendes MC, Souza LFG, Jorge JCF. Influence of rotation frequency and rotation diameter on Mechanical properties and microstructure of weld metal produced by MCAW-RE. International Journal of Advanced Manufacturing Technology. 2020;110:1789-1803. http://doi.org/10.1007/s00170-020-05961-z.

30 Sankar N, Malarvizhi S, Balasubramanian V, Hafeezur Rahman A, Balaguru V. Effect of rotating arc (Spin Arc) on mechanical properties and microstructural characteristics of gas metal arc welded armour steel joints. Transactions of the Indian Institute of Metals. 2022;75:3047-3059. http://doi.org/10.1007/s12666-022-02679-2.

31 Silva WA Fo, Silveira GMS, Costa JFM, Mendes MC, Souza LFG, Jorge JCF. Microstructure and impact toughness of high strength steel weld metals deposited by MCAW-RE process using different shielding gases. International Journal of Advanced Manufacturing Technology. 2021;115:3105-3120. http://doi.org/10.1007/s00170-021-07353-3.

32 American Welding Society. AWS A5.14/A5.14M:2005, Specification for nickel and nickel-Alloy bare welding electrodes and rods. Miami: American Welding Society; 2005.

33 American Society for Testing Materials. ASTM E384-17, Standard test method for microindentation hardness of materials. West Conshohocken: ASTM International; 2017

34 Jorge JCF, Meira OG, Madalena FCA, Souza LFG, Araújo LS, Mendes MC. Evaluation of the AISI 904L alloy weld overlays obtained by GMAW and electro-slag welding processes. Journal of Materials Engineering and Performance. 2017;26(5):2204-2212. http://doi.org/10.1007/s11665-017-2631-9.

35 Najafi M, Bakhshayesh MM, Farzadi A. Microstructure and phase analysis of multilayer Ni–Cr–Mo clad for corrosion protection. Transactions of the Indian Institute of Metals. 2021;74:1663-1672. http://doi.org/10.1007/ s12666-021-02256-z.

36 Souza D, Tavares AF, Costa HL, Osorio AG. Efeito da energia de soldagem sobre a microestrutura e resistência à corrosão de revestimentos de Inconel 625 aplicados pelo processo GMAW. Matéria (Rio de Janeiro). 2020;25(2):1- 17. http://doi.org/10.1590/S1517-707620200002.1033.

37 Akselsen OM, Bjørge R, Ånes HW, Ren X, Nyhus B. Microstructure and properties of wire arc additive manufacturing of Inconel 625. Metals. 2022;12:1867. http://doi.org/10.3390/ met12111867.

38 Zhang C, Qiu Z, Zhu H, Wang Z, Muránsky O, Ionescu M, et al. On the effect of heat input and interpass temperature on the performance of Inconel 625 alloy deposited using wire arc additive manufacturing - cold metal transfer process. Metals. 2022;12:46. http://doi.org/10.3390/met12010046.

39 Frei J, Alexandrov BT, Rethmeier M. Low heat input gas metal arc welding for dissimilar metal weld overlays part II: the transition zone. Welding in the World. 2018;62:317-324. http://doi.org/10.1007/s40194-017-0539-5.

40 Silva CC, Miranda HC, Motta MF, Farias JP, Afonso CRM, Ramirez AJ. New insight on the solidification path of an alloy 625 weld overlay. Journal of Materials Research and Technology. 2013;2(3):228-237. http://doi.org/10.1016/j. jmrt.2013.02.008.

41 Alvarães CP, Madalen FCA, Souza LFG, Jorge JCF, Araújo LS, Mendes MC. Performance of the Inconel 625 weld overlay obtained by FCAW process. Matéria (Rio de Janeiro). 2019;24(1):e12290. http://doi.org/10.1590/S1517- 707620190001.0627.

42 DuPont JN, Lippold JC, Kiser SD. Welding metallurgy and weldability of nickel-base alloys. New Jersey: Wiley; 2009.

43 Banovic SW, DuPont JN, Marder AR. Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys. Science and Technology of Welding and Joining. 2002;7:374-383. http://doi.org/10.1179/136217102225006804.

44 Zhang H, Chang Q, Liu J, Lu H, Wu H, Feng J. A novel rotating wire GMAW process to change fusion zone shape and microstructure of mild steel. Materials Letters. 2014;123:101-103. https://doi.org/10.1016/j.matlet.2014.03.018 .

45 Bai Q, Guo N, Han Y, Zhang J, Wang M. Analysis of temperature distribution in rotating arc welding. Advanced Materials Research. 2012;472-475:1346-1352. http://doi.org/10.4028/www.scientific.net/AMR.472-475.1346.

46 Silva RHG, Schwedersky MB, Santos AGM, Okuyama MP. Effects of the rotating arc technique on the GMA welding process. Soldagem e Inspeção. 2020;25:e2519. http://doi.org/10.1590/0104-9224/SI25.19.

47 Srinivasa Rao P, Gupta OP, Murty SSN. A study on the weld bead characteristics in pulsed gas metal arc welding with rotating arc. In: Proceedings of the of 23rd International Conference on Offshore Mechanics and Arctic Engineering; 2004 June 20-25; Vancouver, Canada. Vancouver: American Society of Mechanical Engineers; 2004. p. 1-5. Paper OMAE2004-51580.

48 Yang YK, Kou S. Fusion-boundary macrosegregation in dissimilar-filler welds. Welding Journal. 2007;86:303-312. 49 Kejelin NZ, Buschinelli AJA, Pope AM. Effect of welding parameters on the partially diluted zones formation at dissimilar metal welds. In:Proceedings of the 18th International Congress of Mechanical Engineering; 2005; Ouro Preto, Brazil. Ouro Preto: Brazilian Association of Engineering and Mechanical Science; 2005. p. 1-8.

50 Dai T, Lippold JC. Tempering effect on the fusion boundary region of alloy 625 weld overlay on 8630 steel. Welding in the World. 2018;62:535-550. http://doi.org/10.1007/s40194-018-0560-3.

51 Rutzinger B. Influence of the welding process to the dilution rate of weld overlays on unalloyed steel using the weld consumable ERNiCrMo-3 (Alloy 625). BiulInstSpawalnictwa. 2014;5:72-75.

52 Lorenzoni RA, Gasparini RP, Santos AC, Luz TS, Macêdo MCS. A study on the intergranular corrosion and pitting resistance of Inconel 625 coating by PTA-P. Corrosion Engineering, Science and Technology. 2019;54(1):62-74. http://doi.org/10.1080/1478422X.2018.1533677.

53 Tasalloti H, Kah P, Martikainen J. Effects of welding wire and torch weaving on GMAW of S355MC and AISI 304L dissimilar welds. International Journal of Advanced Manufacturing Technology. 2014;71:197-205. http://doi. org/10.1007/s00170-013-5484-x.

54 Cavalcante NE, Andrade TC, Pinheiro PHM, Miranda HC, Motta MF, Aguiar WM. Study of MIG/MAG welding procedures for application of coatings of Inconel 625 nickel alloy on ASTM A387 Gr.11 structural steel. Welding International. 2018;32(2):112-121. http://doi.org/10.1080/09507116.2017.1347324.

55 Costa JFM, Lacerda PL, Magalhães HAY, Jorge JCF, Souza LFG, Mendes MC, et al. Inconel 625 weld claddings obtained by the GMAWRE with rotating Electrode. International Journal of Advanced Manufacturing Technology. 2024;132:5647-5661. http://doi.org/10.1007/s00170-024-13697-3.


Submetido em:
03/03/2023

Aceito em:
15/05/2024

667d8e8ea9539536e9049d04 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections