Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20242911
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Efeito da temperatura e do tempo de austêmpera na microestrutura e no comportamento mecânico de aços TRIP

Effect of austempering temperature and time on the microstructure and the mechanical behavior of TRIP steels

Maria Clara Michel Marinho; Eduardo Antônio Pinto Dias; Aline Silva Magalhães; Wellington Lopes; Elaine Carballo Siqueira Correa

Downloads: 0
Views: 106

Resumo

O desenvolvimento, ao longo das últimas décadas, de aços, como os assistidos pelo efeito TRIP (Transformation Induced Plasticity), que possuem boa conformabilidade, elevada resistência mecânica e relativamente baixo custo, foi uma das formas de atender ao mercado automobilístico que necessita de materiais cada vez mais leves e com elevado nível de segurança. Tais características podem ser obtidas a partir de ciclos térmicos e/ou termomecânicos diversos, sendo atribuídas à microestrutura multiconstituída desses aços e, principalmente, ao fenômeno de transformação da austenita em martensita por deformação plástica. Nesse contexto, o objetivo deste trabalho foi analisar os efeitos de parâmetros do ciclo térmico na microestrutura e nas propriedades de um aço com médio teor de carbono. Foi observado que a elevação do tempo de austêmpera aumentou a proporção de bainita e de austenita retida, assim como do teor de carbono nessa última fase, resultando na diminuição da resistência mecânica e na elevação da ductilidade e do expoente de encruamento do aço. De modo análogo, o aumento da temperatura de austêmpera resultou na redução da resistência mecânica, aumento da ductilidade e do expoente de encruamento.

Palavras-chave

Aço TRIP; Microestrutura; Propriedades mecânicas; Encruamento

Abstract

The development of metallic alloys, such as TRIP (Transformation Induced Plasticity) assisted steels, which exhibit good formability, high mechanical strength and relatively low cost, has been one way to meet the automotive industry demands for lighter and safer materials. These characteristics, achieved through various thermal and/or thermomechanical treatments, are due to the multiphase microstructure of these steels and, primarily, to the transformation of retained austenite into martensite induced by plastic deformation. In this context, the aim of this work was to analyze the effects of parameters of the thermal cycle on the microstructure and mechanical properties of a low carbon steel. It was observed that an increase in the austempering time led to an increase in the proportion of bainite and retained austenite, as well as the carbon content of the latter, resulting in a decrease in hardness and mechanical strength, and an increase in the ductility and the strain hardening exponent of the steel. Similarly, an increase in the austempering temperature resulted in a reduction in mechanical strength and hardness, and an increase in ductility and strain hardening exponent.

Keywords

TRIP steel; Microstructure; Mechanical properties; Strain hardening

Referências

1 Ly AL, Findley O. The effects of pre-straining conditions on fatigue behavior of a multiphase TRIP steel. International Journal of Fatigue. 2016;87:225-234.

2 Zhang Z, Koyama M, Wang MM, Tsuzaki K, Tasan CC, Noguchi H. Microstructural mechanisms of fatigue crack non-propagation in TRIP maraging. International Journal of Fatigue. 2018;113:126-136.

3 Martins CEN, Santos CE, Vieira AL, Magalhães PA Jr, Silva GC, Napoles CMN. Análise das propriedades mecânicas do aço TRIP 900 por meio do método de elementos finitos em comparação com os ensaios de tração. Revista Interdisciplinar de Pesquisa em Engenharia. 2016;2(23):106-124.

4 Bhattacharyya T, Singh SB, Das S, Haldar A, Bhattachjee D. Development and characterization of C-Mn-Al-Si-Nb TRIP aided steel. Materials Science and Engineering A. 2011;528:2394-2400.

5 Chiang J, Boyd JD, Pilkey AK. Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. Materials Science and Engineering A. 2015;638:132-142.

6 Fu B, Yang WY, Li LF, Sun ZQ. Effect of bainitic transformation temperature on the mechanical behavior of cold-rolled TRIP steels studied with in-situ high-energy X-ray diffraction. Materials Science and Engineering A. 2014;603:134-140.

7 Wiewiórowska S, Sieminski M, Sleboda T, Lukaszek-Solek A, Dyl T, Koczurkiewicz B. Determination of two-stage heat treatment parameters in industrial conditions in order to obtain a TRIP structure in low-alloy carbon steel wires. Materials. 2022;15(24):8965.

8 Shen F, Qiu LN, Sun X, Zuo L, Liaw PK, Raabe D. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Materials Science and Engineering A. 2015;636:551-564.

9 Blonde R, Jimenez-Melero E, Zhao L, Schell N, Brück E, van der Zwaag S, et al. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading. Materials Science and Engineering A. 2014;594:125-134.

10 Chang Y, Wang M, Wang N, Li X, Wang C, Zheng G, et al. Investigation of forming process of the third-generation automotive medium-Mn steel part with large-fractioned metastable austenite for high formability. Materials Science and Engineering A. 2018;721:179-188.

11 Ferreira RNV. Influência do estado inicial e dos parâmetros de processamento na microestrutura e no comportamento mecânico de um aço assistido pelo efeito TRIP após processamentos térmicos diversos [dissertação]. Belo Horizonte: Programa de Pós-graduação em Engenharia de Materiais, Centro Federal de Educação Tecnológica de Minas Gerais; 2018.

12 Han D, Xu Y, Zhang J, Peng F, Sun W. Relationship between crystallographic orientation, microstructure characteristic and mechanical properties in cold-rolled 3.5Mn TRIP steel. Materials Science and Engineering A. 2021;821:141625.

13 American Society for Testing and Materials – ASTM. ASTM E562-11: standard test method for determining volume fraction by systematic manual point count. West Conshohocken: ASTM; 2019.

14 Cullity BD. Elements of X-ray diffraction. Cambridge: Addison-Wesley Publishing; 1956.

15 Xu HF, Zhao J, Cao WQ, Shi J, Wang CY, Wang C, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C–5Mn). Materials Science and Engineering A. 2012;532:435-442.

16 American Society for Testing and Materials – ASTM. ASTM A370: standard test methods and definitions for mechanical testing of steel products. West Conshohocken: ASTM; 2024.

17 American Society for Testing and Materials – ASTM. ASTM E8: standard test methods for tension testing of metallic materials. West Conshohocken: ASTM; 2024.

18 Fonstein N. Advanced high strength sheet steels: physical metallurgy, design, processing and properties. 1st ed. Switzerland: Springer; 2015.

19 Dieter GE. Metalurgia mecânica. 2ª ed. Rio de Janeiro: Guanabara Dois; 1976.

20 Chiang J, Lawrence JD, Boyd JD, Pilkey AK. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Materials Science and Engineering A. 2011;528(13-14):4516-4521.

21 Li GQ, Shen YF, Jia N, Feng XW, Xue WY. Microstructural evolution and mechanical properties of a micro-alloyed low-density δ-TRIP steel. Materials Science and Engineering A. 2022;848:143430.

22 Morales-Rivas L, Garcia-Mateo C, Kuntz M, Sourmail T, Caballero FG. Induced martensitic transformation during tensile test in nanostructured bainitic steels. Materials Science and Engineering A. 2016;662:169-177.

23 Zhao ZZ, Yin HX, Zhao AM, Gong ZQ, He JG, Tong TT, et al. The influence of the austempering temperature on the transformation behavior and properties of ultra-high-strength TRIP-aided bainitic-ferritic sheet steel. Materials Science and Engineering A. 2014;613:8-16.

24 Cai ZH, Ding H, Kamoutsi H, Haidemenopoulos GN, Misra RDK. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel. Materials Science and Engineering A. 2016;654:359-367.

25 Shen F, Qiu LN, Sun X, Zuo L, Liaw PK, Raabe D. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Materials Science and Engineering A. 2015;636:551-564.

26 Bhadeshia HKDH, Honeycombe RWK. Steels: microstructure and properties. 4th ed. Amsterdam: ButterworthHeinemann; 2017. 488 p.

27 Wang CEA, Ding H, Cai M, Rolfe B. Characterization of microstructures and tensile properties of TRIP- aided steels with different matrix microstructure. Materials Science and Engineering A. 2014;610:65-75.

28 Abbasi E, Rainforth WM. Microstructural evolution during bainite transformation in a vanadium microalloyed TRIP-assisted steel. Materials Science and Engineering A. 2016;651:822-830.

29 Pierce DT, Benzing JT, Jiménez JA, Hickel T, Bleskov I, Keum J, et al. The influence of temperature on the strainhardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Materialia. 2022;22:101425.

30 Liang JH, Zhao ZZ, Zhang CH, Tang D, Yang SF, Liu WN. Microstructure evolution and mechanical properties influenced by austenitizing temperature in aluminum-alloyed TRIP-aided steel. Journal of Iron and Steel Research International. 2017;24(11):1115-1124.

31 Zhang Y, Huo W, Song R, Wang L, Geng Z, Wang J, et al. The effect of isothermal bainitic transformation time on austenite stability of TRIP-980 steel with high ductility. Materials Letters. 2022;326:132927.

32 Xie BS, Cai QW, Yu W, Cao JM, Yang YF. Effect of tempering temperature on resistance to deformation behavior for low carbon bainitic YP960 steels. Materials Science and Engineering A. 2014;618:586-595.

33 Yin W, Briffod F, Yamazaki K, Shiraiwa T, Enoki M. Effect of limited retained austenite on the strength–ductility trade-off in low-alloyed TRIP steel. Materials Science and Engineering A. 2022;861:144337.

34 Fu B, Yang WY, Li L, Sun ZQ. Effect of bainitic transformation temperature on the mechanical behavior of cold-rolled TRIP steels studied with in-situ high-energy X-ray diffraction. Materials Science and Engineering A. 2014;603:134-140.

35 Hajiannia I, Shamanian M, Atapour M, Ghassemali E, Saeidi N. Development of ultrahigh strength TRIP steel containing high volume fraction of martensite and study of the microstructure and tensile behavior. Transactions of the Indian Institute of Metals. 2018;71(6):1363-1370.


Submetido em:
14/07/2023

Aceito em:
18/07/2024

66e84161a953955125436253 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections