Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20242939
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Precipitação de fase sigma em tubos formadores de espiras manufaturados em aço inoxidável duplex UNS S32750 e sua relação com a formação de canais preferenciais por desgaste

Sigma phase precipitation on laying head pipes made of UNS S32750 duplex stainless steel and its influence on the formation of preferential wear channels

Guilherme Duarte Moreira; Juliana de Fátima Maia; Geraldo Lúcio de Faria

Downloads: 0
Views: 82

Resumo

Tubos formadores de espiras são componentes essenciais no processo de laminação de fio máquina. Eles são responsáveis por modificar a geometria dos fios de seção longitudinal reta para helicoidal. Como os mesmos trabalham na faixa de temperatura entre 900 °C e 950 °C, eles são fabricados em aços com características muito específicas no que diz respeito à evolução microestrutural e desempenho em desgaste, sendo o aço inoxidável duplex UNS S32750 um destaque atual. Entretanto, na indústria, há constantes relatos de que tubos fabricados a partir deste aço apresentam desempenhos em serviço muito diferentes (grande variabilidade), com alguns tubos sendo substituídos com um tempo de vida útil até 90% menor do que o esperado. Como a literatura a respeito do tema é muito restrita, este trabalho se propôs a avaliar o efeito da precipitação de fase sigma na temperatura de 950 °C e a relação entre a evolução microestrutural a quente do aço UNS S32750 e a formação de canais preferenciais por desgaste nas paredes internas do tubo; estes essenciais para o bom desempenho do componente. Por meio de simulações computacionais e físicas, foi possível mostrar que esta relação existe e que, em função dela, a definição do diâmetro do fio máquina a ser processado nos 10 primeiros minutos de operação do tubo, assim como da velocidade de operação, é fundamental para se garantir que o mesmo tenha um bom desempenho em serviço.

Palavras-chave

Laminação de fio máquina; Tubo formador de espiras; Aço inoxidável duplex UNS S32750; Fase sigma; Desempenho em desgaste

Abstract

Laying head pipes are essential components in the wire rod rolling process. They are responsible for transforming wires from a straight longitudinal section to a helical shape. As they operate between 900 °C and 950 °C, these pipes are manufactured using steels with specific characteristics in terms of microstructural evolution and wear performance, with the duplex stainless steel UNS S32750 being a current highlight. However, there have been consistent reports in the industry that pipes made from this steel exhibit highly variable performance in service, with some of them experiencing a lifespan up to 90% shorter than expected. Due to the limited literature on this subject, this study aimed to evaluate the effect of sigma phase precipitation at 950 °C and investigate if there is any relationship between the high-temperature microstructural evolution of UNS S32750 steel and the controlled formation of preferential wear channels on the inner walls of the pipe, crucial for the component’s performance. Applying computational and physical simulations, it was possible to demonstrate that such a relationship exists and that, as a result, defining the wire rod diameter to be processed within the first 10 minutes of pipe operation, as well as the operational speed, is fundamental to ensure its high in service performance

Keywords

Wire rod rolling; Laying head pipe; UNS S32750 duplex stainless steel; Sigma phase; Wear behavior

Referências

1 Lashua CD, Kiefer BV. Recent developments in laying head technology for high-speed rod rolling mills. Iron and Steel Technology. 2015;12(8):152-156.

2 Yao S, Ceccarelli M, Carbone G, Ma B. Force analysis and curve design for laying pipe in loop laying head of wire rod mills. Chinese Journal of Mechanical Engineering. 2019;32(1):32.

3 Kiefer B, Gow N, Krejdovsky WP. Advancements in laying head and coil reforming technology for high-speed rod rolling mills. In: Proceedings of the Wire Association International; 2016; Monterrey, Mexico. Monterrey: WAI; 2016.

4 Gouttam M, Sandip B. Wear of laying head pipes in a wire rod mill. Journal of Failure Analysis and Prevention. 2013;13:474-482.

5 Spaghetti A. Laying head pipe material for production of wire roads in long rolling mills. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of the 53rd Rolling Seminar - International ABMweek; 2016; Rio de Janeiro, Brazil. São Paulo: ABM; 2016.

6 Liu C, Liu Y, Ma L, Yuan P. Finite element analysis of contact between laying head pipe and high-speed wire rod. Advanced Materials Research. 2013;690-693:3316-3320.

7 Aguiar CHS, Fonseca GA, Guimarães MR. Desenvolvimento do tubo insertado para o formador de espiras do laminador 2 da ArcelorMittal Monlevade. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Anais do 51° Seminário de Laminação - Processos e Produtos Laminados e Revestidos; 2013; Foz do Iguaçu, Brazil. São Paulo: ABM; 2013.

8 Bayão DV, Faria GLF, Arthuso ECM, Oliveira JR, Silva SN, Pinheiro IP. Estudo cinético da precipitação de fase sigma em um aço inoxidável duplex UNS S31803 envelhecido isotermicamente a 750 °C, 800 °C e 850 °C. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Anais do 74° Congresso Anual da ABM; 2019; São Paulo, Brazil. São Paulo: ABM; 2019.

9 Wu X, Song Z, Liu L, He J, Zheng L. Effect of secondary austenite on fatigue behavior of S32750 super duplex stainless steel. Materials Letters. 2022;322(1):132487.

10 Zou D, Han Y, Zhang W, Yu J. Sigma phase precipitation and properties of super-duplex stainless steel UNS S32750 aged at the nose temperature. Journal of Wuhan University of Technology-Materials Science Edition. 2011;28:182-185.

11 Morais CHXM, Faria GL, Lagoeiro LE, Silva JD. Characterization of the austenite reformation mechanisms as a function of the initial ferritic state in a UNS S32304 duplex stainless steel. Materials Research. 2017;21:1122.

12 Han Y, Zou N, Yao HH, Zhang W. Microstructural evolutions and its influence on properties of super-duplex stainless steel. Advanced Materials Research. 2010;97-101:656-659.

13 American Society for Testing and Materials – ASTM. ASTM 789/A789M: standard specification for seamless and welded ferritic/austenitic stainless steel tubing for general service. West Conshohocken: ASTM International; 2022.

14 American Society for Testing and Materials – ASTM. ASTM E1245-03(2016): standard practice for determining the inclusion or second-phase constituent content of metals by automatic image analysis. West Conshohocken: ASTM International; 2016.

15 American Society for Testing and Materials – ASTM. ASTM E3-11(2017): standard guide for preparation of metallographic specimens. West Conshohocken: ASTM International; 2017.

16 American Society for Testing and Materials – ASTM. ASTM E92-17(2017): standard test methods for vickers hardness and knoop hardness of metallic materials. West Conshohocken: ASTM International; 2017.

17 American Society for Testing and Materials – ASTM. ASTM G133-05(2016): standard test method for linearly reciprocating ball-on-flat sliding wear. West Conshohocken: ASTM International; 2016.

18 Dandekar TR, Kumar A, Khatirkar RK, Singh J, Kumar D. Effect of isothermal aging at 750 °C on microstructure and mechanical properties of UNS S32101 lean duplex stainless steel. Materials Today. Communications. 2021;29:102753.

19 Wang YQ, Han J, Wu HC, Yang B, Wang XT. Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel. Nuclear Engineering and Design. 2013;259:1-7.

20 Maamache B, Cheniti B, Belkessa B, Tahar-chaouch K, Kouba R. Effect of aging temperature on the microstructure, local mechanical properties, and wear behavior of a UNS S32750 super duplex stainless steel. Journal of Materials Engineering and Performance. 2021;30:546-555.

21 Hawk JA, Wilson RD, Tylczak JH, Doğan ÖN. Laboratory abrasive wear tests: investigation of test methods and alloy correlation. Wear. 1999;225–229(Part 2):1031-1042.

22 Ratia V, Valtonen K, Kemppainen A, Kuokkala VT. High-stress abrasion and impact-abrasion testing of wear resistant steels. Tribol Online. 2013;8(2):152-161.

23 Chintha AR. Metallurgical aspects of steels designed to resist abrasion, and impact-abrasion wear. Materials Science and Technology. 2019;35(10):1133-1148.


Submetido em:
21/07/2023

Aceito em:
27/02/2024

65f211b7a9539565574c30c3 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections