Analysis of the generation and physical-chemical characteristics of slag from the recycling of lead-acid batteries
Leonardo Henrique Gomes; Maria José Jerônimo de Santana Ponte; Haroldo de Araújo Ponte; Irineu Antônio Schadach de Brum; Wagner Viana Bielefeldt; William Haupt; Rodrigo Helleis; Elan Gabriel Forteski; Lucas Aparecido Bittencourt; Gabriel Henrique Gomes
Abstract
The lead produced in Brazil comes entirely from the lead-acid battery recycling industry. During the process, 100 to 350 kg of slag is generated for each ton of metallic lead produced. This large amount of waste generated causes serious environmental problems, where reuse and reducing toxicity are measures to resolve its negative impact. Thus, the work methodology adopted was a bibliographic survey addressing the battery recycling process (pyrometallurgy), presenting data, and discussing the toxicity of slag, its generation, its physical and chemical characteristics, and the possible waste environmental impact if not treated and disposed of properly. The results show that lead slag contains some toxic elements, such as lead, zinc, and cadmium, and that if it is not disposed of properly, it will become a paramount environmental problem. Lead slag contains large amounts of silicon, calcium, iron, copper, and other value-added metals, which can be reused as secondary resources. Thus, improper disposal of lead waste can cause critical waste of resources. This article highlights the problems that need to be faced to guarantee the industry’s sustainable development, seeking to reduce the use of inputs and natural resources and minimize environmental problems.
Keywords
Referências
1 Gomes LH, Ponte MJJS, Brum IAS, Ponte HA, Forteski EG. Fundamentals of pyrometallurgical operations in lead-acid battery recycling. In: Anais do Congresso Internacional de Engenharia Mecânica e Industrial; 2022; São Paulo. Recife: Even3; 2022 [cited 2023 Aug 28]. Available at: https://www.even3.com.br/anais/xxiiconemi/540024- fundamentals-of-pyrometallurgical-operations-in-lead-acid-battery-recycling/
2 Associação Brasileira de Normas Técnicas. ABNT NBR 10004:2004: resíduos sólidos: classificação. Rio de Janeiro: ABNT; 2004 [cited 2023 Aug 28]. Available at: https://analiticaqmcresiduos.paginas.ufsc.br/files/2014/07/ Nbr-10004-2004-Classificacao-De-Residuos-Solidos.pdf
3 Gomes LH. Simulação termodinâmica de operações pirometalúrgicas de reciclagem de baterias chumbo-ácido [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2019 [cited 2023 Aug 28]. Available at: https://lume.ufrgs.br/handle/10183/206465
4 Espinosa DCR, Bernardes AM, Tenório J A S. An overview on the current processes for the recycling of batteries. Journal of Power Sources. 2004;135(1-2):311-319. http://doi.org/10.1016/j.jpowsour.2004.03.083.
5 Zhang W, Yang J, Wu X, Hu Y, Yu W, Wang J, et al. A critical review on secondary lead recycling technology and its prospect. Renewable & Sustainable Energy Reviews. 2016;61:108-122. http://doi.org/10.1016/j.rser.2016.03.046.
6 Sohn HY. Non-ferrous process principles and production technologies. In: Seetharaman S, editor. Treatise on process metallurgy. Oxford: Elsevier; 2014.
7 Gupta GS. Metallurgical production technology. In: Seetharaman S, editor. Treatise on process metallurgy. Oxford: Elsevier; 2014.
8 Zhang W, Yang JK, Zhu XF, Sun XJ, Yu WH, Hu YC, et al. Structural study of a lead (II) organic complex – a key precursor in a green recovery route for spent lead-acid battery paste. Journal of Chemical Technology and Biotechnology. 2016;91(3):672-679. http://doi.org/10.1002/jctb.4620.
9 Sun Z, Cao H, Zhang X, Lin X, Zheng W, Cao G, et al. Spent lead-acid battery recycling in China: a review and sustainable analyses on mass flow of lead. Waste Management. 2017;64:190-201. http://doi.org/10.1016/j. wasman.2017.03.007.
10 Li YC, Yuan YZ, Liu H, Peng B, Liu Z. Iron extraction from lead slag by bath smelting. Transactions of Nonferrous Metals Society of China. 2017;27(8):1862-1869. http://doi.org/10.1016/S1003-6326(17)60210-3.
11 Li Y, Su Z, Qiao Q, Hu X, Wan S, Zhao R. Integrated assessment of process pollution prevention and end-of-pipe control in secondary lead smelting. Resources, Conservation and Recycling. 2017;117:1-11. http://doi.org/10.1016/j. resconrec.2015.11.005.
12 Pan D, Li L, Tian X, Wu Y, Cheng N, Yu H. A review on lead slag generation, characteristics, and utilization. Resources, Conservation and Recycling. 2019;146:140-155. http://doi.org/10.1016/j.resconrec.2019.03.036.
13 Andrade MB. Caracterização das escórias provenientes da reciclagem de baterias de chumbo-ácido [dissertação]. Ponta Grossa: Universidade Estadual de Ponta Grossa; 2011 [cited 2023 Aug 28]. Available at: https://tede2.uepg.br/ jspui/handle/prefix/2092
14 Gomes GF. Redução do impacto ambiental da escória de obtenção de chumbo por via secundária [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2006 [cited 2023 Aug 28]. Available at: https://www.lume. ufrgs.br/bitstream/handle/10183/7331/000542257.pdf?sequence=1&isAllowed=y
15 Smaniotto A, Antunes A, Filho IDN, Venquiaruto LD, de Oliveira D, Mossi A, et al. Qualitative lead extraction from recycled lead-acid batteries slag. Journal of Hazardous Materials. 2009;172(2-3):1677-1680. http://doi. org/10.1016/j.jhazmat.2009.07.026.
16 Yin N, Sivry Y, Guyot F, Lens PNL, van Hullebusch ED. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags. Journal of Environmental Management. 2016;180:310-323. http:// doi.org/10.1016/j.jenvman.2016.05.052.
17 Zheng SA, Zheng XQ, Chen C. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain. PLoS One. 2012;7(11):e49664. http://doi.org/10.1371/journal.pone.0049664.
18 Zhou Z, Peng C, Liu X, Jiang Z, Guo Z, Xiao X. Pollution and risk assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via data integration analysis. International Journal of Environmental Research and Public Health. 2022;19(15):9698. http://doi.org/10.3390/ijerph19159698.
19 Silva WR, Silva FBV, Araújo PRM, do Nascimento CWA. Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb and Zn by slag disposal. Ecotoxicology and Environmental Safety. 2017;144:522-530. http://doi.org/10.1016/j.ecoenv.2017.06.068.
20 Hilts SR. Effect of smelter emission reductions on children’s blood lead levels. The Science of the Total Environment. 2003;303(1-2):51-58. http://doi.org/10.1016/S0048-9697(02)00357-1.
21 Tukker A, Buist H, van Oers L, van der Voet E. Risks to health and environment oh the use of lead in products in the EU. Resources, Conservation and Recycling. 2006;49(2):89-109. http://doi.org/10.1016/j.resconrec.2006.03.005.
22 U.S. Environmental Protection Agency. Hazardous waste characteristics. Title 40 CFR, part 261.24 toxicity characteristcs. Washington, D.C.: US EPA; 2009 [cited 2023 Aug 29]. Available at: https://www.epa.gov/sites/ default/files/2016-01/documents/hw-char.pdf
Submetido em:
30/08/2023
Aceito em:
22/03/2024