Caracterização microestrutural e do desempenho em desgaste de pontas de perfuração de tubos de aço sem costura submetidas a tratamento térmico de oxidação superficial
Microstructural and wear resistance characterization of superficial oxidized piercing plugs applied to the rolling of seamless steel pipes
Lucas Morais de Menezes; Ian Cesar Rocha Vieira Ribeiro; José Márcio da Rocha; Geraldo Lúcio de Faria
Resumo
Tubos de aço sem costura são usualmente empregados na extração e transporte de óleo e gás. Sua fabricação envolve custos relativamente elevados, sendo um dos principais relativo às ferramentas utilizadas no processo de laminação, como por exemplo, as pontas de perfuração. Além da forte influência sobre o custo, a resistência mecânica e ao desgaste dessas ferramentas é essencial para garantir a qualidade do tubo fabricado. As pontas de perfuração são fabricadas em aço-ferramenta e passam por um tratamento térmico de oxidação em altas temperaturas, anterior ao uso na laminação, para garantir o seu bom desempenho em temperaturas elevadas. Este trabalho teve como objetivo realizar a caracterização microestrutural da camada de óxidos formada em pontas de perfuração e avaliar o seu desempenho em desgaste. Para este fim, técnicas como microscopia óptica confocal, eletrônica, difração por raios-X, difração de elétrons retroespalhados e ensaios tribológicos para medição de taxas de desgaste foram empregadas em amostras submetida a duas diferentes rotas: i) ciclo único e ii) ciclo duplo de oxidação. Por meio dos ensaios realizados, concluiu-se que um eficaz tratamento térmico em ciclo duplo gera uma camada de óxidos com baixo nível de porosidade, adequada espessura, baixa fração volumétrica de hematita, com predominância de wustita e magnetita. A combinação destas características proporcionou baixas taxas de desgaste; 205% menor do que o verificado para a aplicação de um ciclo único. Conclui-se que a aplicação de um ciclo duplo bem planejado propicia uma condição melhorada para o desempenho em desgaste e, consequentemente, para o aumento da vida útil da ferramenta.
Palavras-chave
Abstract
Seamless steel pipes are primarily used to extract and transport oil and gas. One of the main cost drivers in its production process is related to the tooling used in the process, like the piercing plugs. Besides the impact on cost, the mechanical and wear resistance of those plugs is essential to ensure a good quality of the pipes being produced. The piercing plugs are manufactured using steel designed for tooling and usually pass through an oxidation heat treatment at high temperatures before being used in the rolling process to ensure appropriate tribological properties. This work aimed to characterize the evolution of the oxides layers formed on the oxidation heat treatment of piercing plugs and its wear performance. With this purpose, the oxides layers were analyzed by confocal optical microscopy, scanning electric microscopy, X-ray and backscattered electron diffraction in samples submitted to two heat treatment routes: i) Single cycle and ii) Double cycle. Besides these tests, tribological analyses were also carried out to measure wear rates. Based on the obtained results, this paper concluded that an effective double cycle oxidation heat treatment provides an oxide layer with low porosity, appropriate thickness, reduced hematite fraction and mainly formed by wustite and magnetite that provided lower wear rate; 205% lower than the measured for the single cycle. It was concluded that the use of the double cycle oxidation improve the component wear behavior and, consequently contributes to the increase of tool service-life.
Keywords
References
1 Mannesmann M; Max Mannesmann, depositante. Manufacture of seamless tubes. United States Patent US 361,962. 1887 Apr 26 [acesso em 4 set. 2023]. Disponível em: https://patents.google.com/patent/US361962A/ en?oq=US361962
2 Godefroid LB, Sena BM, Trindade, VB. Evaluation of microstructure and mechanical properties of seamless steel pipes API 5L type obtained by diferente processes of heat treatments. Materials Research. 2017;20(2):514:522.
3 Lima APS, Faria GL, Trindade VB, Cândido LC. Effect of the chemical homogeneity of a quanched and tempered C-Mn steel pipe on the mechanical properties and phase transformations. Materials Research. 2019;22(4):e20180680.
4 Carvalho RN. Aspectos da precipitação e da recristalização na laminação contínua de tubos sem costura [tese]. Belo Horizonte: Escola de Engenharia, Universidade Federal de Minas Gerais; 2007.
5 Ferraz PP. Estudos do processo de amaciamento no laminador contínuo da V&M do Brasil [dissertação]. Belo Horizonte: Escola de Engenharia, Universidade Federal de Minas Gerais; 2009.
6 Inouye K, Kato M. Studies on the process of piercing seamless steel tube by the Stiefel-Mannesmann piercing mil (V). Tetsu To Hagane. 1954;40(5):493-499.
7 Ohnuki A, Hamauzu S, Kawanami T, Nakajima K . Surface behavior and temperature of plug in piercing of seamless steel pipe. Iron and Steel Institute of Japan – J-STAGE. 1986;72(3):450-457.
8 Makedonov SI. High temperature oxidation of piercing plugs. J.Steel Pipe. 1990;19(5):59-60.
9 Zheng C, Tian Q. Effect of alloy elements on oxidation behavior of piercing plug steel. Chin Shu Hsueh Pao. 2019;55(4):427-435.
10 Wang B, Yi DQ, Wu BT. Failure type analysis and studies on prolonging service life of piercer plug for seamless steel tube. International Materials Reviews. 2006;20(6):82.
11 Pater Z, Kazanecki J. Thermo-mechanical analysis of piercing plug loads in the skew rolling process of thick-walled tube shell. Metallurgy and Foundry Engineering. 2006;32:31-40.
12 Zheng C, Tian Q. Effect of oxidation process on surface scale of 20Cr2Ni3 piercing plug steel. IOP Conference Series. Materials Science and Engineering. 2019;490:022068.
13 Zambrano OA, Coronado JJ, Rodríguez SA. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200°C in Air. Surface and Coatings Technology. 2015;282:155-162.
14 Barrau O, Boher C, Vergne C, Rezai-aria F. Investigations of friction and wear mechanisms of hot forging tool steels. In: Proceedings of 6th International Tooling Conference; 2002 September 10-13; Karlstad, Sweden. Karlstad: Karlstad University; 2002. p. 81-94.
15 Gao W, Li Z. Developments in high-temperature corrosion and protection of materials. Cambridge: Woodhead Publishing Limited; 2008.
16 Vergne C, Boher C, Gras R, Levaillant C. Influence of oxides on friction in hot rolling: experimental investigations and tribological modelling. Wear. 2006;260(9-10):957-975.
17 Zhu U, Zhang H, Li N, Jiang Z. Friction and wear characteristics of Fe3 O4 nano-additive lubricant in micro-rolling. Lubricants (Basel, Switzerland). 2023;11(10):434.
18 Yu X, Jiang Z, Wei D, Zhou C, Huang Q, Yang D. Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel. Wear. 2013;302(1-2):1286-1294.
19 Faria GL, Moreira PS, Pinto MA. Effect of microstructure and surficial oxidation on the wear behavior of an UNS S41003 stainless steel. Steel Research International. 2023;94(9):2200792.
20 Birks N, Meier GH, Pettit FS. Introduction to the high temperature oxidation of metal. 2nd ed. New York: Cambridge University Press; 2006.
21 Trindade VB. Corrosão de ligas metálicas em altas temperaturas. Vila Velha: Above Publicações; 2013.
22 Juricic C, Pinto H, Cardinali D, Klaus M, Genzel CH, Pyzalla AR. Evolution of microstructure and internal stresses in multi-phase oxide scales grown on (110) surfaces of iron single crystals at 650°C. Oxidation of Metals. 2010;73(1-2):115-138.
23 Silva AV, Silva JMS. Otimização de vida útil de pontas de perfuração. Relatório interno Vallourec PAQ 08/03, VMB 38/03. Belo Horizonte, 2003.
24 Lee DB, Choi JW. High temperature oxidation of steels in air and CO2 -O2 atmosphere. Oxidation of Metals. 2005;64:319-329.
25 Oleksak RP, Tylczak JH, Holcom GR, Dogan Ömer N. High temperature oxidation of steels in CO2 containing impurities. Corrosion Science. 2020;164:108316.
26 Kominko H, Jaron A. High temperature oxidation process of P91 steel in CO2 atmosphere containing SO2 . Archives of Metallurgy and Materials. 2019;64(4):1597-1602.
27 Kwon G, Park H, Choi B, Lee Y, Moon K. Influence of Cr content on the high-temperature oxidation behavior and mechanism of low alloy steels. Materials (Basel). 2023;16:4964.
28 ASTM International. ASTM G133-05(2016). Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. West Conshohocken: ASTM International; 2016.
29 Hao M, Sun B, Wang H. High-temperature oxidation behavior of Fe-1Cr-0,2Si steel. Materials (Basel). 2020;13:509.
30 Chaliampalais D, Vourlias G, Pavlidou E, Chrissafis K. High temperature oxidation of Cr-Mo-V tool steel in carbon dioxide. Journal of Thermal Analysis and Calorimetry. 2013;113:1309-1315.
31 Quadakkers WJ, Zurek J, Hänsel M. Effect of water vapor on high-temperature oxidation of FeCr alloys. JOM. 2009;61:44-50.
32 Chen RY, Yeun WYD. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxidation of Metals. 2003;59(5/6):433-468.
33 Stott FH, Gabriel GJ, Wei FI, Wood GC. The development of silicon‐containing oxides during the oxidation of iron‐ chromium‐base alloys. Materials and Corrosion. 1987;38(9):521-531.
34 ASTM International. ASTM E1245-03(2016), Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. West Conshohocken: ASTM International; 2016.
35 Jurici C, Pinto H, Cardinali D, Klaus M, Genzel C, Pyzalla AR. Effect of substrate grain size on the growth, texture and internal stresses of iron oxide scale forming at 450°C. Oxidation of Metals. 2010;73:15-41.
Submitted date:
09/04/2023
Accepted date:
04/21/2024