Dilatometric insights into classical and modern maraging steels: a comparative analysis of grades 300, 350, and 400
Ana Larissa Melo Feitosa; Daniela Passarelo Moura da Fonseca; Leandro Gomes de Carvalho; Angelo Fernando Padilha
Abstract
Maraging steels feature prominently in the class of ultrahigh-mechanical-strength steels, achieving remarkable mechanical strength through an optimized combination of chemical compositions and a straightforward heat treatment process involving solution annealing and aging. In this study, the results acquired for the three main classes of maraging steels (300, 350, and 400), including grade 300 by additive manufacturing, using dilatometry complemented by other microstructural characterization techniques, such as scanning electron microscopy, transmission electron microscopy, Synchrotron X-ray diffraction, and Vickers hardness, are presented and compared. The main results obtained rely on the different dilatometric behaviors between grade 400 and the other grades (300 and 350). The former is characterized by lower Ni and higher Mo contents, appearing to present one main precipitate governing the increase in hardness before the occurrence of austenite reversion. The latter is primarily associated with two different precipitate types. The key conclusion drawn from this study is that varying the elemental ratios and production procedures play a pivotal role in the phase transformation of maraging steels, even suppressing the formation of Ni-rich phases and boosting the formation of Mo-rich phases.
Keywords
References
1 Fonseca DPM, Feitosa ALM, Carvalho LG, Plaut RL, Padilha AF. A short review on ultra-high-strength maraging steels and future perspectives. Materials Research. 2021;24(1):e20200470. http://doi.org/10.1590/1980- 5373-mr-2020-0470.
2 Rohrbach K, Schmidt M. Maraging steels. In: ASM Handbook Committee, editor. Properties and selection: irons, steels, and high-performance alloys. Vol. 1. Materials Park: ASM International; 1990. p. 793-800. http://doi. org/10.31399/asm.hb.v01.a0001043.
3 Hornbogen E, Rittner K. Development of thermo-mechanical treatments of a maraging steel for yield strengths above 3 GPa. Steel Research. 1987;58(4):172-177. http://doi.org/10.1002/srin.198700857.
4 Menzel J, Klaar H-J. Systematische Gefügeuntersuchungen am martensitaushärtenden Stahl X 2 NiCoMo 13 15 10. Steel Research. 1990;61:30-38. http://doi.org/10.1002/srin.199000293.
5 Schmidt M, Rohrbach K, Carson C. Heat treating of maraging steels. In: ASM Handbook Committee, editor. Heat treating of irons and steels. Vol. 4. Materials Park: ASM International; 2014. p. 468-80. http://doi.org/10.31399/asm. hb.v04d.a0005948.
6 Sha W, Leitner H, Guo Z, Xu W. Phase transformations in maraging steels. In: Pereloma E, Edmonds DV, editors. Phase transformations in steels. Burlington: Elsevier; 2012, p. 332-362. http://doi.org/10.1533/9780857096111.2.332.
7 Xu X, Ganguly S, Ding J, Guo S, Williams S, Martina F. Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Materials Characterization. 2018;143:152-162. http://doi.org/10.1016/j.matchar.2017.12.002.
8 Peters DT, Cupp CR. The kinetics of ageing reactions in 18%Ni maraging steels. Trans AIME. 1966;236:1420-1429.
9 Fonseca DPM, Altoé MVP, Archanjo BS, Annese E, Padilha AF. Influence of Mo content on the precipitation behavior of 13Ni maraging ultra-high strength steels. Metals. 2023;13(12):1929. http://doi.org/10.3390/ met13121929.
10 Carvalho LG, Plaut RL, Padilha AF. Precipitation kinetic analysis in a Maraging 350 steel using KJMA and AustinRickett equations. Defect and Diffusion Forum. 2022;420:118-128. http://doi.org/10.4028/p-luf4h8.
11 Moshka O, Pinkas M, Brosh E, Ezersky V, Meshi L. Addressing the issue of precipitates in maraging steels: unambiguous answer. Materials Science and Engineering A. 2015;638:232-239. http://doi.org/10.1016/j. msea.2015.04.067.
12 Rohit B, Muktinutalapati NR. Austenite reversion in 18% Ni maraging steel and its weldments. Materials Science and Technology. 2018;34(3):253-260. http://doi.org/10.1080/02670836.2017.1407544.
13 Feitosa ALM, Escobar J, Ribamar GG, Avila JA, Padilha AF. Direct Observation of Austenite Reversion During Aging of 18Ni (350 Grade) Maraging Steel Through In-Situ Synchrotron X-Ray Diffraction. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2022;53(2):420-431. http://doi.org/10.1007/ s11661-021-06496-y.
14 Li X, Yin Z. Reverted austenite during aging in 18Ni(350) maraging steel. Materials Letters. 1995;24(4):239-242. http://doi.org/10.1016/0167-577X(95)00109-3.
15 Carvalho LG, Plaut RL, de Lima NB, Padilha AF. Kinetics of martensite reversion to austenite during overaging in a maraging 350 steel. ISIJ International. 2019;59(6):1119-1127. http://doi.org/10.2355/isijinternational. ISIJINT-2018-610.
16 Viswanathan UK, Dey GK, Sethumadhavan V. Effects of austenite reversion during overageing on the mechanical properties of 18 Ni (350) maraging steel. Materials Science and Engineering A. 2005;398(1-2):367-372. http://doi. org/10.1016/j.msea.2005.03.074.
17 Pardal JM, Tavares SSM, Terra VF, Silva MR, Santos DR. Modeling of precipitation hardening during the aging and overaging of 18Ni-Co-Mo-Ti maraging 300 steel. Journal of Alloys and Compounds. 2005;393(1-2):109-113. http:// doi.org/10.1016/j.jallcom.2004.09.049.
18 DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components: process, structure and properties. Progress in Materials Science. 2018;92:112-224. http://doi. org/10.1016/j.pmatsci.2017.10.001.
19 Conde FF, Avila JA, Oliveira JP, Schell N, Oliveira MF, Escobar JD. Effect of the as-built microstructure on the martensite to austenite transformation in a 18Ni maraging steel after laser-based powder bed fusion. Additive Manufacturing. 2021;46:102122. http://doi.org/10.1016/j.addma.2021.102122.
20 Mooney B, Kourousis K. A review of factors affecting the mechanical properties of maraging steel 300 fabricated via laser powder bed fusion. Metals. 2020;10(9):1273. http://doi.org/10.3390/met10091273.
21 Tekin T, Ischia G, Naclerio F, Ipek R, Molinari A. Effect of a direct aging heat treatment on the microstructure and the tensile properties of a 18Ni-300 maraging steel produced by Laser Powder Bed Fusion. Materials Science and Engineering A. 2023;872:144921. http://doi.org/10.1016/j.msea.2023.144921.
22 Mao Z, Lu X, Yang H, Niu X, Zhang L, Xie X. Processing optimization, microstructure, mechanical properties and nanoprecipitation behavior of 18Ni300 maraging steel in selective laser melting. Materials Science and Engineering A. 2022;830:142334. http://doi.org/10.1016/j.msea.2021.142334.
23 Shamsdini S, Pirgazi H, Ghoncheh MH, Sanjari M, Amirkhiz BS, Kestens L, et al. A relationship between the build and texture orientation in tensile loading of the additively manufactured maraging steels. Additive Manufacturing. 2021;41:101954. http://doi.org/10.1016/j.addma.2021.101954.
24 Vishwakarma J, Chattopadhyay K, Santhi Srinivas NC. Effect of build orientation on microstructure and tensile behaviour of selectively laser melted M300 maraging steel. Materials Science and Engineering A. 2020;798:140130. http://doi.org/10.1016/j.msea.2020.140130.
25 Patil VV, Mohanty CP, Prashanth KG. Selective laser melting of a novel 13Ni400 maraging steel: Material characterization and process optimization. Journal of Materials Research and Technology. 2023;27:3979-3995. http://doi.org/10.1016/j.jmrt.2023.10.193.
26 Peinado G, Carvalho C, Jardini A, Souza E, Avila JA, Baptista C. Microstructural and mechanical characterization of additively manufactured parts of maraging 18Ni300M steel with water and gas atomized powders feedstock. International Journal of Advanced Manufacturing Technology. 2024;130(1-2):223-237. http://doi.org/10.1007/ s00170-023-12686-2.
27 Chevenard MP. Mécanisme de la trempe des aciers au carbone. Revue de Métallurgie. 1919;16(1-2):17-80. http:// doi.org/10.1051/metal/191916010017.
28 Wells C, Ackley RA, Mehl RF. A dilatometric study of the α-γ transformation in high-purity iron. Transactions of the American Society for Metals. 1936;24:46-66.
29 Ooi SW, Hill P, Rawson M, Bhadeshia HKDH. Effect of retained austenite and high temperature Laves phase on the work hardening of an experimental maraging steel. Materials Science and Engineering A. 2013;564:485-492. http:// doi.org/10.1016/j.msea.2012.12.016.
30 Viswanathan UK, Dey GK, Asundi MK. Precipitation hardening in 350 grade maraging steel. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1993;24(11):2429-2442. http://doi.org/10.1007/ BF02646522.
31 He Y, Yang K, Qu W, Kong F, Su G. Strengthening and toughening of a 2800-MPa grade maraging steel. Materials Letters. 2002;56(5):763-769. http://doi.org/10.1016/S0167-577X(02)00610-9.
32 Conde FF, Escobar JD, Oliveira JP, Jardini AL, Bose WW Fo, Avila JA. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Additive Manufacturing. 2019;29:100804. http://doi.org/10.1016/j.addma.2019.100804.
33 Loewy S, Rheingans B, Meka SR, Mittemeijer EJ. Unusual martensite-formation kinetics in steels: observation of discontinuous transformation rates. Acta Materialia. 2014;64:93-99. http://doi.org/10.1016/j.actamat.2013.11.052.
34 Escobar JD, Oliveira JP, Salvador CAF, Tschiptschin AP, Mei PR, Ramirez AJ. Double-step inter-critical tempering of a supermartensitic stainless steel: Evolution of hardness, microstructure and elemental partitioning. Materials Characterization. 2019;158:109994. http://doi.org/10.1016/j.matchar.2019.109994.
35 Kapoor R, Batra IS. On the α to γ transformation in maraging (grade 350), PH 13-8 Mo and 17-4 PH steels. Materials Science and Engineering A. 2004;371(1-2):324-334. http://doi.org/10.1016/j.msea.2003.12.023.
36 Bojack A, Zhao L, Morris PF, Sietsma J. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel. Materials Characterization. 2012;71:77-86. http://doi.org/10.1016/j. matchar.2012.06.004.
37 Carvalho LG, Andrade MS, Plaut RL, Souza FM, Padilha AF. A dilatometric study of the phase transformations in 300 and 350 maraging steels during continuous heating rates. Materials Research. 2013;16(4):740-744. http://doi. org/10.1590/S1516-14392013005000069.
38 García de Andrés C, Caballero FG, Capdevila C, Álvarez LF. Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Materials Characterization. 2002;48(1):101-111. http://doi.org/10.1016/ S1044-5803(02)00259-0.
39 Electro Optical Systems – EOS GmbH. Material data sheet EOS MaragingSteel MS1. Vol. 49. München: EOS; 2011.
40 Santos PLL, Avila JA, Fonseca EB, Gabriel AHG, Jardini AL, Lopes ÉSN. Plane-strain fracture toughness of thin additively manufactured maraging steel samples. Additive Manufacturing. 2022;49:102509. http://doi.org/10.1016/j. addma.2021.102509.
41 Dehgahi S, Ghoncheh MH, Hadadzadeh A, Sanjari M, Amirkhiz BS, Mohammadi M. The role of titanium on the microstructure and mechanical properties of additively manufactured C300 maraging steels. Materials & Design. 2020;194:108965. http://doi.org/10.1016/j.matdes.2020.108965.
42 Jägle E, Sheng Z, Kürnsteiner P, Ocylok S, Weisheit A, Raabe D. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials. 2016;10(1):8. http://doi. org/10.3390/ma10010008.
43 Morsdorf L, Jeannin O, Barbier D, Mitsuhara M, Raabe D, Tasan CC. Multiple mechanisms of lath martensite plasticity. Acta Materialia. 2016;121:202-214. http://doi.org/10.1016/j.actamat.2016.09.006.
44 Król M, Snopiński P, Czech A. The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel. Journal of Thermal Analysis and Calorimetry. 2020;142(2):1011-1018. http://doi.org/10.1007/s10973-020-09316-4.
45 Peters DT. A study of austenite reversion during aging of maraging steels. Trans ASM. 1968;61:62-74.
46 Guo Z, Sha W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Computational Materials Science. 2004;29(1):12-28. http://doi.org/10.1016/S0927- 0256(03)00092-2.
47 Padial AGF. Caracterização microestrutural do aço maraging de grau 400 de resistência mecânica ultra-elevada [tese]. São Paulo: Universidade de São Paulo; 2002.
48 Banerjee BR, Hauser JJ, Capenos JM. Role of cobalt in the marage-type alloy matrix. Metal Science Journal. 1968;2(1):76-80. http://doi.org/10.1179/030634568790443125.
49 Niu MC, Yin LC, Yang K, Luan JH, Wang W, Jiao ZB. Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3 Ti, Mo-enriched, and Cr-rich co-precipitates. Acta Materialia. 2021;209:116788. http://doi.org/10.1016/j.actamat.2021.116788.
50 Tan C, Zhou K, Kuang M, Ma W, Kuang T. Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Science and Technology of Advanced Materials. 2018;19(1):746-758. http://doi.org/10.1080/14686996.2018.1527645.
51 Alves TJB, Nunes GCS, Tupan LFS, Sarvezuk PWC, Ivashita FF, Oliveira CAS, et al. Aging-induced transformations of maraging-400 alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2018;49(8):3441-3449. http://doi.org/10.1007/s11661-018-4724-y.
52 Niu M, Zhou G, Wang W, Shahzad MB, Shan Y, Yang K. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel. Acta Materialia. 2019;179:296-307. http://doi.org/10.1016/j. actamat.2019.08.042.
53 Rohit B, Muktinutalapati NR. Fatigue behavior of 18% Ni maraging steels: a review. Journal of Materials Engineering and Performance. 2021;30(4):2341-2354. http://doi.org/10.1007/s11665-021-05583-w.
54 Floreen S, Hayden HW. Some observations of void growth during the tensile deformation of a high strength steel. Scripta Metallurgica. 1970;4(2):87-94. http://doi.org/10.1016/0036-9748(70)90170-5.
55 Kalish D, Rack HJ. Thermal embrittlement of 18 Ni(350) maraging steel. Metallurgical Transactions. 1971;2(9):2665-2672. http://doi.org/10.1007/BF02814910.
56 Psioda JA, Low JR Jr. The effect of microstructure and strength on the fracture toughlness of an 18 Ni, 300 grade maraging steel. Washington, D.C.: NASA; 1977.
Submitted date:
02/01/2024
Accepted date:
10/17/2024